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Abstract 

The structure of the space of wave functions in the representation given by a complete 
strongly admissible polarization of the phase space is investigated. The conditions that 
the wave functions should be covariant constant along the real part of the polarization 
define the Bohr-Sommerfeld set of the representation containing the supports of all 
wave functions. There is a natural scalar product for the wave functions defined on the 
Bohr-Sommerfeld set. It is shown, for a real polarization, that the resulting Hilbert 
space of wave functions is not trivial if and only if the Bohr-Sommerfeld set is not 
empty. 

1. Introduction 

Let X denote  a manifold representing the phase space o f  a classical system 
and co a symplect ic  form on X defined by the Lagrange bracket.  The canonical  
quant iza t ion  o f  the system (X, co) requires the no t ion  o f  a classical counter-  
part o f  a comple te  set o f  independent  commut ing  observables. As classical 
observables one could choose real-valued smooth  funct ions f on X such that  
their  Hamil tonian vector  fields ~f, defined by 

~ ~ co = - a f  (1.1) 

are complete .  Therefore ,  a comple te  set of  independent  commut ing  observ- 
ables would  be a set o f n  = ½ dim X funct ions  f l  . . . . .  fn  on X, independen t  
at all points  o f  X,  such that  their  Poisson brackets vanish, i.e., 

~ (~J i '  ~S) = 0, i , / =  l . . . .  , ,~ (1.2) 

and the vector  fields ~fl . . . . .  ~fn are complete .  However,  for many  phase 
spaces of  interest ,  there does no t  exist such a set, and one has to relax the 

1 Partially supported by the National Research Council, Grant No. A8091. 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

615 



616 SNIATYCKI AND TOPOROWSKI 

assumptions. If one drops the conditions that fi 's should be real and globally 
defined, one is led to notion of a polarization of (X, co). Note that the vector 
fields ~ft, " " ~e span over complex numbers an involutive complex 
distribution F' onJnX such that dime F = n and co restricted to F vanishes 
identically. 

The wave functions in the representation defined by a polarization F are 
"square integrable" sections of a certain complex line bundle over X, 
covariant constant along F. The condition that the wave functions should 
be covariant constant along the real part F ¢q P of the polarization F defines 
a subset of the phase space, called the Bohr-Sommerfeld set of the rep- 
resentation, which contains the supports of all wave functions. The structure 
of the Bohr-Sommerfeld set for a complete strongly admissible polarization 
is studied here in detail. It is shown that there is an intrinsically defined scalar 
product in the space of sections of the complex line bundle defined over the 
Bohr-Sommerfeld set and covariant constant along the polarization. If the 
polarization is real, the resulting Hilbert space of wave functions is nontrivial 
if  and only if the Bohr-Sommerfeld set is not empty. For partially complex 
polarizations, which correspond to a generalization of the representation in 
terms of analytic functions used by Bargmann, (1961), there could be 
additional conditions on the supports of the wave functions due to the 
requirement that they should be analytic in some variables. This problem 
requires further investigation. 

The analysis of the structure of the space of wave functions is carried 
here within the framework of the theory of geometric quantization. This 
theory, introduced by Kostant (1970), provides a unified treatment of the 
construction of irreducible representations of connected Lie groups. On the 
other hand, it enables a theoretical physicist to carry the process of canonical 
quantization in such a way that all the structure used in the process is 
specified in geometric terms. This aspect of the theory extends the theory 
developed independently by Souriau (1970). The notion of a polarization of a 
symplectic manifold first appeared in the work of Auslander and Kostant 
(1971) on the representations of solvable Lie groups. The complex line 
bundle over X such that its sections covariant constant along the polarization 
are appropriate candidates for the wave functions is specified in the paper by 
Blattner (1973), summarizing the development of the theory of geometric 
quantization. The results obtained here are generalizations of the results of 
~niatycki (t975), and Toporowski (1976). 

The representation adopted in this paper is essentially self-contained as 
far as the theory of geometric quantization is concerned. However, we make 
use freely of the standard mathematical techniques of differentiable mani- 
folds, topology, etc. The next section contains definitions and statement of 
the results. Proofs of the results obtained are contained in Section 3. 

2. Definitions and Results 

A polarizalion of a symplectic manifold (X, co) is a complex involutive 
distribution F on X, i.e., an involutive subbundle of the complexified tangent 
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bundle 9 - ¢ X  of  X such that co restricted to F vanishes identically, c~ t F x F = 0, 
and dimension o f F  (3 ff is constant, where F denotes the complex conjugate 
ofF.  The complex distributions F 63/Tand F + F defined by a polarization F 
are complexifications of  some real distributions denoted by D and E, res- 
pectively, 

F63F=D e, F + F = E  c (2.1) 

Since D is the intersection of  invohitive distributions, D = F 63 ff  63 ~-'X, it is 
an involutive real distribution on X. Let X/D denote the space of integral 
manifolds of  D and riD: X-+ X/D the canonical projection. A polarization F 
is said to be strongly admissible i f E  is an involutive distribution and the 
spaces X/D and X/E of integral manifolds of  D and E, respectively, are mani- 
folds such that the canonical projections fro: X-+ X/D, r@: X-+ X/E, and 
nED: X/D -+ X/E are submersions. 

Proposition 2.1. For a strongly admissible polarization F each 
integral manifold A of  D has a canonically defined global paral- 
lelism such that the parallel vector fields commute. Parallel vector 
fields in A are the restrictions to A of  the Hamiltonian vector fields 
in D. 

A strongly admissible polarization F is said to be complete if the parallel 
vector fields on the integral manifolds of  D are complete. For each positive 
integer k, we denote by ~-k the k toms, i.e., the quotient of  Nk by the 
discrete subgroup of  Nk generated by the canonical basis in N k  The k toms 
has a canonically defined global parallelism in which parallel vector fields 
are the projections of  constant vector fields in Nk. Thus, the product 
~1 x~-k has canonically defined global parallelism and the parallel vector 
fields in Nt xTk are complete. 

Proposition 2.2. Let F be a complete strongly admissible polariza- 
tion of  (X, co). For each x ~ X the integral manifold A of  D through 
x is isomorphic, as a manifold with a global parallelism, to the 
product Nct-k x ~-k for some integer k such that 0 ~< k ~< d = dim D. 

Let, for each k ~ {0, 1 . . . .  , d}, Xk denote the subset of  X consisting of  
all the points x E X  such that the integral manifold of D through x is 
isomorphic to R ct-k x IF k, and let X k = U t ~> .kXt. For each x ~ X, we denote 
by K x the subspace of Dx spanned by all v ~ D  x such that the parallel vector 
field, in the integral manifold of  D through x, extending v is periodic. Clearly, 
for x ~ Xk, dim Kx = k. Let Kx ± be the subspace of ~--x X defined by 

Kx ± = {u ~ 9-xX [ C~(u, v) = 0 for all v ~ Kx} (2.2) 

Further, let K = UxcxKx  and K ± = Ux~xKx ±. In general, neither K n o r K  ± 
are distributions since their dimensions may vary from point to point. 

Theorem 2.3. Let F be a complete strongly admissible polarization 
of (X,  co). For each k ~ (0 ,  1 , . . . ,  d} the following hold: 
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(A) X k is open in X. 
(B) I f x  E Xk, then the integral manifold of E through x is con- 

tained in Xk. 
(C) For each), E 7rD(Xk) there exists a neighborhood V o fy  in 

X/D such that the following hold: 
(i) For each x ~ ~rD 1 (V) Cl Xk the integral manifold of E through 

x is contained in nD ~ (V). 
(ii) There exists a canonical extension o f K I X k  O 7rDI(V) to a 

k-dimensional involutive distribution vK on nDI(V)invariant under 
the action of the Hamiltonian vector fields in E I ~D 1 (V), and con- 
tained in K l~rD 1 (V). The integral manifolds of vK are diffeomorphic 
to T k. For k ~> 1, here exists a unique density vK on v K invariant 
under the action of the Hamiltonian vector fields in El  7rDI(V), and 
associating to each integral manifold of vK the total volume 1. 

(iii) The distribution vK ± defined by 

vKi=(u~ JxXlXC~rDl(V),co(u,v)=OforallvCvKx} (2.3) 

is a k-codimensional involutive distribution extending K tIXk C3 7rDI(V) 
and it projects to an involutive k-codimensional distribution 9"DrD(v K±) 
on V. 

Let L denote a complex line bundle over X with a connection V such that 
the curvature form of V is equal to the pull back o f - h - 1  co, where h denotes 
Planck's constant, and with a V invariant Hermitian form (,). Such a line 
bundle exists if and only if h - l  co defines an integral de Rham cohomology 
class and, if this condition is satisfied, the set of all equivalence classes of 
line bundles with connection having this curvature form can be parametrized 
by the group of all unitary characters of the fundamental group of X (Kostant, 
1970). 

Let ~ F  denote the bundle of linear frames of F, where elements of JJF 
are ordered n-tuples of linearly independent vectors in Fx, for some x ~ X. 
The bundle ~ F  is a right principal Gl(n, C) fiber bundle over X, The nth 
exterior product of F is a complex line bundle AnF over X. It is a fiber bundle 
associated to N F  with the typical fibre C on which Gl(n, C) acts by multipli- 
cation by the determinant of the corresponding matrix. We shall need a 
complex line bundle ~/AnF defined as follows: Let Ml(n, C) denote the 
double covering group of Gl(n, C) and p: Ml(n, C) -+ Gl(n, C) the covering 
homomorphism. A bundle of metalinear frames o f f  is a fight principal 
Ml(n, C) fiber bundle ~ F  over X together with a map r: N F  ~ N F  such that 
the following diagram commutes: 

~F x Gl(n, C)-+ ~ F  
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where the horizontal arrows denote the group actions. The existence of a 
metalinear frame bundle of F is equivalent to the vanishing of a class in 
H2(X, 7/2) characteristic of NF. Let X: Ml(n, C) ~ C be the unique holo- 
morphic square root of the complex character det o p of Ml(n, C) such that 
X(~ 7) = 1, where Idenotes the identity ofMl(n, C). The bundle x/AnF is the 
fiber bundle over X associated to Ml(n, C) with standard fibre C on which 
Ml(n, C) acts by multiplication by x(A), -4 EMl(n, C). In geometric quantiza- 
tion, one works traditionally with the bundle (An)I/2(TX/F)* of half-forms 
normal to F, introduced by Blattner (1973), which is isomorphic to ~//~n~ 
In Sniatycki (1975) a bundle isomorphic to the dual of X/AnF was used. We 
find it more convenient to work with ~/An/~i The space of sections u of 
X//knFis isomorphic to the space of functions p#" ~ F - +  C satisf in the 
condition v#(/7 .~A ~) = X(~ -1 )v#(~), for each b E ~ F  and each ,3 ~ Mg(n, C). 
A strongly admissible polarization can be locally spanned by Hamiltonian 
vector fields (Nirenberg, 1957). A local section/3 o f ~ F  is called a 
HarniItonian rnetalinearfrarne field of F if its projection to a section of 
N F  consists of an ordered n-tuple of Hamiltonian vector fields spanning F. 
There is a canonically defined operator V of partial covariant differentiation 
of sections of X/AnF in direction F such that a section v of x/AnF is covariant 
constant along F if, for each Hamittonian metalinear frame field ~ ofF ,  the 
function v # o ~ is constant along F (Simms, 1974). 

The connection in L and the operator of partial covariant differentation 
of sections of X/?\nF in the direction F define an operator of partial covariant 
differentiation of sections of L®~/AnF in the direction F which will be 
denoted by V. For each integral manifold A of D the operator V induces a 
fiat connection in (L®x//\nF) I A. The Bohr-Sommerfeld set S is defined 
as the union of all integral manifolds A of D such that the hotonomy group 
of the flat connection in (L®x/AnF) I A vanishes. If X® v is a global section 
o fL®@nF covariant constant along F, then it is covariant constant along 
D so that X(x)® v(x) = 0 forx  ~ 5'. For each k c (0, 1 . . . .  , d}, we denote 
by Sk the intersection of S with Xk, Sk = S O Xk. 

Theorem 2.4. Let F be a complete strongly admissible polarization 
of (X, co) and S the Bohr-Sommerfeld set defined by the operator 
V of partial covariant differentiation of sections of L®x/AnFin 
the direction F. The following hold: 

(A) S is closed. 
(B) So = Xo and, for each k E (1 . . . . .  d} and each x E Sk, the 

integral manifold of E through x is contained in Sk. 
(C) Given any point x ~ Sk, let Vbe a neighborhood of gD(X) 

in X/D admitting a canonical extension o f K  jXk N lrD 1 (V) to a 
distribution vK on ~rol(V) [cf. Theorem 2.3(C)], and let v K± be 
the involutive distribution on zrD 1 (V) defined as in Theorem 2.3. 
If Q denotes tile integral manifold of YTrD(vK z) passing through 
~rD(X), then there exists an open set P in  X/D such that Q ~ V c V 
and 
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(a) S C37rD 1 ( # )  c 7r3 t (Q) 
(b) X x  A rrD 1 (O) c_ Sk.  

For each k E {0, 1 . . . . .  d} consider the space of (discontinuous) sections 
?  ̀® ~, 0 f L ® N / A n F  satisfying the following conditions: 

I. Support of  ?`®v is contained in S x. 
II. For each x E Sk  the restriction of X®v to 7rDI(Q), where Q is the 

integral manifold through rrD(X ) of the distribution J-rrD(vK-L), for some 
neighborhood V of  7r D (x), is a smooth section of  ( L ® ' v / A n F )  trrDI(Q) 
covariant constant along F [ r@l(Q) c'~ Sk.  

III. The projection to X / E  of the support of  X®u has a finite number of  
connected components.  
This space has a canonically defined pre-Hilbert subspace -.ggo k with a scalar 
product ( ' [ ' )k  described below. Let ?`1® Pl and ?`2® v2 be two sections 
satisfying the conditions I, II, and III. Then, there exists a finite number of 
open sets rrDt(Va) . . . . .  rrDl(Vs) in X such that each 7@l(Vi) admits a distri- 
b ution v i K  and the supports of  ?` i ® v i and ?'2 ® v2 are contained in the 
union of sets of  the form UDI(Qi), i C (1 . . . . .  s}, where Q1 . . . .  , Q,, are 
integral manifolds of  ~--rrD(V ~ K )  . . . .  , 9--rrD(VsK±), respectively. For each 
i C {1 . . . . .  s} we associate to the pair of  sections ?`1 ® ~'1 and ?`2 ® v2 a 
density ~?`1 ® vl, ?`2 ® P2)Qi o n  Qi in the way given in Sniatycki (1974). Let 
x E 7r~)l(Qi) and consider a basis in Y'xCX of the tbrm 

(vl . . . .  , Vd, UX . . . .  , Un-a, ffl . . . .  , Un-ct, Wa . . . .  , Wcl) (2.4) 

satisfying the following conditions: 
(1) For each],  t E ( 1  . . . .  , d }  and m C ( t  . . . . .  n - d }  

co(v], wl) = ~]z, co(u,,,, wl) = O, co(w], wt) = 0 

(2) (v 1 . . . . .  Vk) is a basis in v,-Kxsuch that vitc(v 1 . . . . .  Vk) = I. 
(3) (v 1 . . . .  , Vd) is a basis in Dx.  
(4) b = (v a . . . . .  Vd, u l  . . . . .  Un-d) is a basis in F x and, for each 

], l C (1 . . . .  , n - d } ,  I co(uj, fix) I = 6]t, where ut denotes the complex con- 
jugate of  ul. 

(5) @t . . . . .  v d, U l . . . . .  Un-cl, u l . . . .  , Un-d, Wk + l . . . .  , W d) is a basis 
tn 9-~%;~(Qi). 
This basis yields a basis 

(~--TrD (b/1) . . . .  , ~ .~/rD(Un-d) ,  ~ - 7 r D U l ) , . . . ,  J'TTD('Un_cl), 
Y-lrD(wk+0,..., Y-~rD(Wa)) (2,5) 

in f C Q  i at ao(X) .  Let  b E ,~F  x be a metalinear frame of F a t  x projecting 
t o  b = (v 1 . . . . .  Vd, Ul . . . . .  Un-a). The value of the density (Xl® Ul, ?`2®v2)0i  
on the basis (2.5) in y e Q i  , at rrD(x ) is defined to be 

(?`a(x), ?`2(x)) vl #(b) v2 #(b) (2.6) 
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Following an argument similar to that in Sniatycki (1975) one shows that the 
expression (2.6) depends only on the basis (2.5) in J-CQi at 7rD(x ) in such a 
way that, under the change from the basis (2.4) to another basis in ~"CQi at 
lrD(x ) which comes from a basis in ~ ¢X satisfying conditions (1)-(5), it X 
transforms as a density. Hence, <Xl ® el, X2® U2>Qi defined by (2.6) is a 
density on Qi. It is a smooth density since one can choose locally smooth 
linear frame fields for J e X  satisfying conditions (1)-(5) and lift the result- 
ing local linear frame field o f f  to a smooth local metalinear frame field 
ofF .  

Let Jfo k denote the subspace of  the space of sections of L®~/AnF 
satisfying conditions I, II, and III and such that, for X®u E ~ o  k 

llX®ull 2 = ~ ~ <X®~,,X®U>Qi<~ (2.7) 
t 

where, for each i, the integral is taken over the manifold Qi and the sum- 
mation is taken over all distinct manifolds Qi such that nDt(Qi) intersects 
the support of  X®p. The scalar product in ~fo k is defined by 

()kl® Pl [ ~k2®/22)k = ~ I ()kl®/21' •2®P2)Qi (2.8) 
l 

Clearly, this scalar product defines in ~ o  k the pre-Hitbert space structure. 
Let ~ k  denote the Hilbert space obtained by the completion of 24°o k with 
respect to the norm (2.7). The space 

d k 
= ®}'c= o ~g (2.9) 

is the Hilbert space of  the wave functions in the representation given by the 
complete strongly admissible polarization F. 

Theorem 2.5. Let F be a complete strongly admissible polarization 
such that F = F. Then, ~a(ca4 = 0 if and only if the Bohr-Sommerfeld 
set S is not empty.  

3. Proofs 

Let F be a strongly admissible polarization of (X, co). Let f l  . . . . .  fd be 
coordinate functions defined in an open set Uin X/E, where d = dim D = 
dim X/E. For each i C {1 . . . .  , d} we denote by }i the Hamiltonian vector 
field of  the function ~ o 7r E on TrOt(U). The vector fields }1 }~ com- 
mute and span D 17r-l(u). Hence, for each integral manifold A of r ,  con- 
tained in a2~l(u), the restrictions to A of  }a . . . .  , }a are commuting vector 
fields that span the tangent bundle space of A. This defines in A a global 
parallelism such that the parallel vector fields in A commute and they are 
the restrictions to A of the Hamiltonian vector fields in D. Clearly, the 
global parallelism in A defined here is independent of  the choice of  chart in 
X/E. Thus, Proposition 3.1 has been proved. 
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Let F be a complete strongly admissible polarization. Then, the 
Hamiltonian vector fields ~i . . . . .  ~d in D t zr/~l(U) are complete. Let, for 
each i E {1 . . . .  , d} ,  ~ot i denote the one-parameter group of  diffeomorphisms 
of  7tEl(U) generated by ~i The commutativity o f  the vector fields ~1, . .  -, ~ct 
implies that the diffeomorphisms ¢t i and ~s] commute, for each i, ] E ( 1 , . . . ,  d )  
and s, t E •. Since ~i's are Hamiltonian vector fields, the one-parameter 
groups ~t i preserve cO lnE l (U) .  Therefore, we have an action ,!J: R d x frEt(U) 

gE 1 (U) of  Rct on n/~l(U) preserving the symplectic form co [ rr~l(U). This 
action is defined by g s ( ( t l , . . . ,  tcl), x) = ~0ttl o - . -  © tpta~(x), for each 
( t l , . . . ,  ta) E R a and each x E 7r~l(U). For each integral manifold A o l D  
contained in rr~: 1 (U), the action of  Rct restricted to A is transitive on A. 
This follows from the facts that, for eachx @ A, the mapping q~x: Ra ~ A 
defined by q~x(t i . . . .  , ta)  = ~ ( (  t l, . . ., td), x ) i s  a local diffeomorphism 
and A is connected. Hence, the integral manifold A of  D passing through x 
is diffeomorphic to the quotient of  Nct by the isotropy group Gx o f x  
defined by Gx = { ( t l  . . . . .  ta) E •d I q~((tl . . . . .  ta), x) = x}. Since G x is a 
discrete subgroup of  Nd it is generated by k = rank Gx linearly independent 
(over R) elements o f  N a, where 0 ~< k ~ d .  Thus, Na/G x ~ R a - e  x V k and, 
therefore, A is diffeomorphic to Nct-e x ~-e, where "0 "to denotes the k torus. 
Note that the diffeomorphism A ~- R ct-e x ~ x  maps the parallel vector 
fields on A to parallel vector fields on N d - x  x T k. This completes the proof  
of Proposition 2.2. 

Lernma 3.1. Let  F be a complete strongly admissible polarization. 
For each x ~ ZrE 1 (U), there exist a neighborhood V of 7rD(X ) C X / D  
and a 1-form 0 on 7rDI(V) invariant under the action of  Nd such 
that co 17rDI(V) = dO. Given a basis (vl  . . . . .  Vd) in Dx, one can 
choose 0 so that 0(Vl), : . . ,  (Vd) are preassigned numbers. 

Proof. Let Vbe a contractible neighborhood of  7rD(x ) E X / D  admitting a 
section a: V ~  X of  7r D such that O(TrD(X)) = X, and contained in 7rE~(U). 
For each t = (tl  . . . . .  ta)  E N a, we denote by q~t the diffeomorphism of  
7r/~l(U) onto itself defined by qrt(x') = ~ ( t ,  x ' )  -- q~((tl . . . . .  ta), x ' )  for 
every x '  C 7tEl(U). Then, for each t E N d, ~ t  o o is a section of 7r D defined 
over V, and the family {~t  o ~} of  sections of  7r D defines a foliation of  
7rDI(V) transversal to the fibers of  7r D. We shall refer to the distribution 
tangent to this foliation as the horizontal distribution, while the distribution 
tangent to the fibers of  7r D will be called vertical. Since Vis contractible, 
the tangent bundle space of  V admits a global trivialization. Let ~t . . . .  , ~2n-d 
be 2n-d  = dim V of  linearly independent vector fields on V, and r/1 . . . . .  r12n-a 
the horizontal lifts to ~rD 1 (V) of  ~1 . . . . .  ~2n-d,  respectively. That is, 
r?l . . . . .  r72n-a are horizontal vector fields on 7rD I (V) invariant under the 
action of  Nd and projecting to ~ , . . . ,  "rl2n-d, respectively. The collection 

1 
~I  . . . . .  ~d ,  771 . . . .  , 7~2n_ d of vector fields on 7r D (V) trivializes the tangent 
bundle space of  7rDl(V). Let ~-~ . . . .  , ~'a be 1-forms on rrDI(V) defined by 
ri(~]) = 6i] and ri(*h) = 0, for all i, j @ (1 . . . .  , d }, l ~ (1 . . . .  , 2 n - d  }. The 
forms r 1, . . . ,  r d are invariant under the action of  Nct and are closed, since 
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the horizontal distribution spanned by the r/is is involutive and [~i, ~l] = 
[~i, rh ] = 0, for all i ,]  E {1 . . . . .  d},  l E ( 1 , . . . ,  2n-d}.  Consider the 2-form 
6o 1 in 7rD1 (V) defined by w 1 = co - d(~a= l(fi o ~rE). ~ri) , where f l  . . . .  , f a  
are the coordinate functions on Udefining ~1 . . . . .  ~a as the Hamiltonian 
vector fields off1 o rr E . . . . .  fa  o 7rE, respectively. Clearly, 6o 1 is a closed 
2-form invariant under the action of  ~a  and such that, for each i E {1 . . . . .  d},  
~i _J 6o 1 = 0. Hence, co 1 = n o * ~  1 for a unique closed 2-form ~1 on V. Since 
V is contractible, each closed 2-form on V is exact and there exists a 1-form 
ffl such that 31  = d01. Then co = d[N~= 10ei O 1rE)7" i + 01] , where 01 = ~ D * 0 1 .  

Let (vl . . . .  , va) be a basis in Dx and al . . . .  , act arbitrary real numbers. We 
want to choose a 1-form 0 on 7rD 1 (V) such that co = dO and O(vi) = ai, for 
each i E { 1 , . . . ,  d}. Decomposing the vectors ~l(x) . . . . .  ~a(x) in terms of  
the basis (v 1 . . . .  , va) we get ~i(x) = Za= laijv], for each i E { 1 , . . . ,  d}. Since 
the vectors ~ l (x ) , . . . ,  ~a(x) form a basis in D x,  the conditions O(vi) = ai, 
for each i E (1 . . . . .  d} are equivalent to 0(~ (x)) = ai, where al = Z,4=laHal, 
for each i E (1 . . . .  , d}. Let 0 = ~i=l(airi + [fi o 7r E - f/(rrE(X)) ] ri~ + 0 1. 
Then, dO = co I nD 1 ( V) and O(~i(x) ) = a~., for each i E { 1 , . . . ,  d ) ,  as required. ,, 

Lemma 3.2. Let F be a complete strongly admissible polarization 
and let v E D x  be such that the parallel vector field extending v in 
the integral manifold of  D through x is periodic with period 1. 
There exist a neighborhood V o f  nD(X ) in X/D and a vector field 
in D [ 1rDI(V) such that ~(x) = v and the orbits of  ~ are periodic 
with period 1. If  co [ ZrD 1 (V) = dO, then ~ is the Hamiltonian vector 
field of  a function f o n  7rD I (V)  defined as follows: For.each 
x '  E zrDl(V), f (x ' )  is the integral of  0 over the orbit of  ~ through x!. 
If 0 is invariant under the action o f d  Hamittonian vector fields 
spanning D lrrD t (V), then f =  0(~). 

Any two Hamiltonian vector fields ~1 and ~2 in 7rDI(V) with 
periodic orbits with period 1 and such that ~1 (x) = ~2(x) are equal 
in @1(Vt)  for some open set V1 such that e o ( x )  E V1 c K 

Proof. Let U be a coordinate neighborhood of  rr/~(x) in X / E  with co- 
ordinate functions f l  . . . .  , fa  and the corresponding Hamiltonian vector 
fields ~1 . . . . .  ~ct spanning D ] 7r~(U), and Vo a neighborhood of ~rD(X ) in 
X /D  admitting a section a: 1/'o -~ X of  7r D such that O(TrD(X)) = X. We use 
the notation introduced at the beginning of  this section. 

Let q5: Nd x Vo -+ rrD~(Vo) denote the mapping defined by ~((t~ . . . .  , t a ) , y )  
= ~ ( ( t l ,  . . . ,  tcl), o ( y ) ) ,  for each (tl . . . .  , ta) ~ Na and eachy  ~ Vo. Clearly, 
qb is a local diffeomorphism of  Na x Vo onto 7rDl(Vo). By shrinking Vo, if 
necessary, we can find an open neighborhood W of O ~ Rct such that the 
restriction of  q5 to W x V o is a diffeomorphism onto q~(w x Vo). This implies 
that W Cq Ga(y ) = (0}  for eachy  ~ Vo, where Ga(y ) denotes the isotropy 
group of  a(y) with respect to the action • of  Nd on 7r/~l(u). Since the 
isotropy groups of  all points of  an integral manifold of  D are the same, it 
follows that W (3 Gx, = 0 for all x '  ~ ~rDl(Vo). 

Let S l , . . . ,  sd be the components of  v with respect to the basis 
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(~ l (x )  . . . .  , ~d(X)) in Dx,  and A denote the integral manifold of  D through x. 
The parallel vector field on A extending v coincides with the restriction to A 
of  the Hamiltonian vector field sl ~1 + . . .  + ScrOd. Since the orbit o f  
sl G 1 +" " • + sag a through x is periodic with period 1, it follows that  ~s  is a 
diffeomorphism of  7r~l(U) onto itself that keeps x fixed, where s = (sl . . . . .  sd). 
The set ~ s ( ~ ( W  x Vo) ) N ~(W x Vo) contains x and is open in 7rDI(Vo). 
Hence, (W x Vo) (3 ep,1 ( ~ s o  ep(W x Vo)) is an open set in R d x V o con- 
taining (0, 7rD(X)), and there exist a neighborhood V of  7rD(X ) contained in 
Vo and a smooth mapping/3: V-+ I¢ ~ R d such that,  for e achy  ¢ V, 
• ~(y)(o(y))  = g~s(a(y)). Therefore, for e achy  E V, 

~, (s  - t~Cv), o(y)) = %(q,_~(y)(O(y))) 

= % ( , I , _ s ( o ( y ) ) )  = ,I,(s - s ,  oCv)) 

= , I , (0,  o ( y ) )  = o ( y )  

Moreover, the isotropy groups of the points on an integral manifold D 
coincide. Hence, for each x '  E 7 r J ( V ) ,  s - fl(TrD(X')) E Gx,. Let G ° be the 
vector field in D]TrDI(V)  such that, for e achx '  @ 7rDl(V), the components 
of  ~°(x')  with respect to the basis (Gl(x ')  . . . . .  ~Ct(x')) in Dx, are given by 
the components o r s  -/3(rr D ( x ' ) ) E  N ct. Since G I, : . . ,  ~ct are smooth vector 
fields and fi 0 ~r D is a smooth mapping, ~o is a smooth vector field. For each 
x '  E 7rDI(V), s -- [30rD(X')) G Gx' which implies that the orbit of  G ° through 
x '  is periodic. Let fo be the function On 7@1(V) that  associates to each 
x '  E 7@1(V) the period of the orbit of  G ° through x ' .  The function fo is a 
continuous smooth nonvanishing function on 7r~l(V) constant on the orbits 
o f ~  ° andfo (x )  = i .  The vector field G = (1 / fo )~" i s  a smooth vector field on 
7rDI(V) with periodic orbits with period 1 and such that ~(x) = v. 

Let 0 be a 1-form on 7rDI(V) such that co [ rrDa ( I0  = dO. Let, for each 
x '  E ~z)X(V), "[x': i O, 1] -+ ~DI(V) denote the integral curve o f~  passing 
through x '  and f ( x  ) = f~ 7x'*0 = ~0, where the last integral is taken over the 
orbit of  ~ through x ' .  The function f defined in this way is a smooth function 
on @ I ( v )  and, for each vector field f on 7rDI(V) we have 

i 

0 

For each i ~ (1 . . . .  , d}, we have ~i . f ( x ' )  = 0 since co(G i, ~) = 0. Let al  . . . . .  ad 
denote the components  of  ~ with respect to the basis ~i . . . .  , ~ d  ~ = ~,d=lai~i" 
The functions ai, i ~ {1 . . . .  , D}, are constant along the orbits of  ~ and, for 
each l ~ (1 . . . .  , 2 n - d } ,  

1 

~ .  f(x') = f ~(~[~/~,(t)], G [7~'(t)l )dr  
0 

! 
d 

= f E a,'(V~'(0)~(Vl[Tx'(t)], G~[~x'(0] )dr 
0 i = 1  
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d 1 

= ~ ai(x') I a~(rh[Tx'(t)]' ~i[7~'(t)] )a t  
i = 1  0 

d 
= 

i = 1  

since, for each l E (1 . . . .  , 2n -d}  and each i E { t , . . . ,  d},  ~o(~/t, ~i) = ~7l" 
(j~ o 7rg) is constant along the orbit of  ~. Hence, ~h " f  = co0h, 0 ,  for all 
I E  {1 . . . . .  2n -d} .  This, and ~i . f =  0 = co(~ i, ~), for all i E { 1 , . . . ,  d}, 
imply that ~_A co = - d r  Hence, ~ is the Hamiltonian vector field o f f  
Assume now that  0 is invariant under the action of the vector fields 
~ 1 . . . ,  ~a  Given x '  E 7rDl(V), the Hamiltonian vector field ~' =a l (x ' )~  1 + 
• • • + act(x')~ ct agrees with ~ on the orbit of  ~ through x '  and .L,e~,0 = 0. 
Therefore, on the orbit of  ~ through x '  we have ~(0(~))= ~'0(~) = ~ , 0 ( ~ )  + 
0([~', ~]) = 0. Hence, 0(~) is constant along the orbit of  ~ through x and 
the integral of  0 over the orbit is equal to 0(~(x')) since the orbit has period 1. 
Thus, f ( x ' )  = 0(~(x')), for each x '  E rrDI(V). 

Let ~ and ~ be two Hamiltonian vector fields in D 17rDI(V) such that 
~(x) = ~(x) = v and the orbits o f~  and ~ are periodic with period 1. We 
denote by ~t the one-parameter group of diffeomorphism of  7rDI(V) 
generated by ~ - g. Then, ~t(x)  = x for all t ~ R and ~ ( x ' )  = x '  for all 

t --1 
x ~ 7r D (V). If  c 1 . . . . .  c a denote the components of  ~ - gwith  respect to 

- - 1  • r r the basis ~1 . . . . .  ~a and c: 7r D (V) -+ R a is defined by c(x ) = (ca(x )  . . . .  , 
ca(x ' )  ), then ~ [ ( C l ( X ' ) ,  . . ' . . . . .  1 • , ca(x  )), x ] = ~01(x ) = x for e achx  ~ 7r D (V). 
Hence, c(x')  E Gx', for each x '  E rrDl(v) and c(x)  = 0. Since c is continuous 
and W is an open neighborhood of O E N a  such that W f3 Gx, = (0}, for each 
x ' E  7rD~(V), c -~ (W) i s  an open neighborhood of  ~rD(X ) in Vsuch that ~ = 
o n  

Proposition 3.3. If F is a complete strongly admissible polarization 
of (X,  c~) then, for each k ~ {0, 1 . . . . .  d}, X k is open in X. 

Proo f  Since X ° = X, it is open. Assume k ~> 1. Given a point x ~ X  ~, let 
v~ . . . .  , vg be linearly independent vectors in Dx such that the parallel vector 
fields extending v ~ . . . . .  v k in the integral manifold of  D through x have 
periodic orbits with period 1. By Lemma 3.2, there exist Hamiltonian vector 
fields ~ . . . . .  ~c in D, defined in a neighborhood ~rD~(V) o f x  such that, for 
each i = 1 . . . . .  k,  ~i(x) = v i and the orbits of  ~i are periodic with period i. 
Since ~1 . . . .  , ~g are linearly independent at x, they are linearly independent 
in some neighborhood W ofx .  Then, for each x '  ~ W, dim Kx, >~ k, which 
implies that lg _c X k. Hence, X k is open in X. ., 

Proposition 3.4. I f F  is a complete strongly admissible polarization 
then, for each k ~ {0, 1 . . . .  , d} and each x ~ Ark, the integral 
manifold M of E through x is contained in Xg. 

Proof. The complex version of the Frobenius theorem (Nirenberg, 1957) 
ensures that, for each x '  ~ M  there exist a neighborhood W o f x '  in X, d real 
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Hamiltonian vector fields ~1 . . . . .  ~a spanning D I W and (n-d) complex 
Hamiltonian vector fields ~.1 . . . . .  ~n-a such that, ~1 . . . . .  ~d ~a . . . .  , ~n-d 
span F l I4/. Since the Hamittonian vector fields in F commute and the 
Hamiltonian vector fields spanningD t W can be canonically extended to 
complete Hamiltonian vector fields spanning D 17@ I (w D (W)), we may assume, 
without loss of generality, that W = ~rD1(V) for a neighborhood V of WD(X') 
in X/D. Let, for each i ~ ( 1 , . . . ,  n-d}, Re ~i and Im ~i denote the real 
Hamiltonian vector fields on WD1(V) equal to the real and the imaginary part 
of ~i respectively. The vector fields Re ~-1 . . . . .  Re ~n-a, Im ~-1 . . . .  , I m  ~-n-a 
induce local one-parameter groups of local diffeomorphism of WDl(V) 
preserving co I WDl(V) and commuting with the action of N d on  7T;I(v) 
induced by ~1 . . . . .  ~a. Moreover, ~1 , . . . ,  ~d, Re ~.I , . . . ,  Re fn-a, Im fl  . . . . .  
Im ~-n-a span E I WDI(V). Hence, there exists a neighborhood V of ~rD(x' ) in 
X/D such that V c Vand, for each x" E 7rD 1 (~r) K) M there exists a local diffeo- 
morphism of M mapping diffeomorphically the integral manifold o l d  
through x '  onto the integral manifold of D through x ' .  Hence, the set of all 
points in M such that the integral manifolds of D through these points are 
diffeomorpkic to the integral manifold of  D through a chosen point x '  E M  
is open in M. Since M is connected, it follows that all integral manifolds of  D 
contained in M are diffeomorphic to each other. Hence, i fx  E M (~ Xk, it 
follows that M ~ zV k. II 

Proposition 3.5. Let F be a complete strongly admissible polariza- 
tion of(X, co). For each Yo e wo(Xk) ~_ X/D there exists a neigh- 
borhood V o f y  o in X/D such that the following hold: 

(i) For each x ~ WDI(V) (3 Xk the integral manifold o r E  through 
x is contained in 7rD~(V). 

(ii) There exists a canonical extension o f K l X k  (3 WDI(V) to a 
k-dimensional involutive distribution vK on WDl(V)l invariant under 
the action of the Hamiltonian vector fields in E lrr D (V), and con- 
tained in K] WDI(V). The integral manifolds of vK are diffeomorphic 
to y t :  For k > 0, there exists a unique density vg on vK invariant 
under the action of the Hamiltonian vector fields in. E 1WDI(V), and 
associating to each integral manitbld of  vK the total volume 1. 

(iii) The distribution vK l defined by vK ± = {u ~ J 'xXIX E 7rDJ(V), 
co(u, v) = 0 for all v C vKx } is a k-codimensional involutive distri- 
bution extending K±I X k A rrDl(V) and it projects to an involutive 
k-codimensional distribution 3-WD(vK ±) on K 

Proof. For k = 0, K IXo is a zero-dimensional vector bundle over Xo and 
K ± t Xo = .~-X t Xo, so that the statement of Proposition 3.5 is obvious. 
Assume k ~> 1, Since X k is open in X and, for each x ~ Xk, the integral 
manifold of E through x is contained in X k, given Yo E ~rD(X~) we can choose 
a coordinate neighborhood U of WED(/O ) in X/E such that w E (U) -~ X k. For 
each), E WD(Xk) ~ lr~)(U), there exists a neighborhood Vy o f y  in w ~ ( U )  
and k linearly independent Hamiltonian vector fields y~l . . . . .  y~k in " 
K ] @l(Vy)  such that their orbits are periodic with period 1. For each 
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X E 7fDI(Vy (~/ f~ l  n "ffD(Xk)), the ordered k-tuples of vectors  (y~l(x) ,  . . . ,  
s~k(x)) and (y~- (x) . . . . .  y~k(x)) form bases for K x, and they are related 
by a nonsingular linear trans%rmation, s~i(x) = E~= laii(x)y~l(x ). But then, 
there exists a neighborhood Vof  ~rD(X ) contained in Vy N V s such that the 
matric coefficients a] i are constant on lrDl(l?); cf. I_emma 3.2. Hence, there 
exists an open set Vyy containing (I/y U Vy) ¢3 7fD(Xk) such that the vector 
f i e l d s  y ~ l  . . . .  , y~x and y~l . . . .  , y ~  are related by a nonsingular linear 
transformation in zrDl(Vyy N Vy N Vy). Therefore, the vector fields y~i and 
y~] define a k-dimensional distribution on 7rDl(Vyy). Continuing this process 
we obtain an open set V containing (Uy Vy) n 7rD(Xk) such that the vector 
fields s~ 1 . . . .  , y~k, f o r y  ~ zr~)(U) N 7rD(Xk) span a k-dimensional distri- 
bution vK in ZrDI(V). Clearly, vK agrees with K on zrDl(V) n Xk, and for 
each x E rrD~(V) N Xk, the integral manifold of  E through x is contained in 
7rDI(V). Since the Hamiltonian vector fields in D commute with the 
Hamiltonian vector fields in E, the distribution vK is involutive and it is 
invariant under the action of  the Hamiltonian vector fields in E 17rDI(V). 
Since the orbits of the vector fields y~l . . . .  , y~k spanning vK t zrDl(Vy) are 
periodic with period 1, it follows that all integral manifolds of vK are 
diffeomorphic to V k. If K is any nonvanishing density on vK normalized so 
that the total volume of  each integral manifold of vK is 1, by averaging K 
over the integral manifolds of  vK we obtain a density vK invariant under 
the action of the Hamiltonian vector fields in vK such that the total volume 
of each integral manifold of vK is 1. This implies that, for each y E 7rD(Xx) n 
7tEl(U), vK(y~l . . . . .  ~..~k) has {ntegral values so that it is constant in 
ZrDi'(V N Vy). Hence vK is invariant under the action of the Hamiltonian 
vector fields in E I zrD1 (V). 

Let v Kl  be defined by v Ki  = {u E G'xXJx E lrDI(V), co(u, v) = 0 for all 
v E vKx}. For eachy  E Zro(Xk) N ZrE~ (U) we denote by y f l  . . . .  , y f k  
functions on ZrDl(Vy) such that each y~i is the Hamiltonian vector field of 
yJq, i E { 1 , . . . ,  k). Then, vK ± [ z@l(Vy N V) is uniquely characterized by 
the following condition: For each x E ~DI(V). u E vKx ± if  and only if 
u. y f l  = u . y f2 . . . . .  u . yfg = 0. Hence, vK -j- is smooth and integrable, 
i.e., involutive. Moreover, vK - D 17rDI(V) implies EI lrDI(V) ~ vK ±. 
Hence, vK ± projects to a k-codimensional involutive distribution ~"TrD(V K±) 
on V. • 

Since Theorem 2.3 consists of the statements of  Propositions 3.3, 3.4, 
and 3.5, the proof of Theorem 2.3 is completed. Similarly, we shall split 
Theorem 2.4 into a series of  propositions. First we need the following 
lemma. 

Lemma 3. 6. Let F be a complete strongly admissible polarization. 
For eachy  CX/D, there exists a neighborhood V o f y  inX/D such 
that, for each Hamiltonian vector field ~ in K 17rDI(V) with periodic 
orbits with period 1, the function associating to each x c 7rDI(V) 
the element of  the holonomy group ofx//knF defined by the orbit 
of ~ through x is constant on 7rDI(V) and it takes on values -+1. 
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Proof Using the same argument as in the proof  of  Proposition 3.4, we 
can choose a connected neighborhood V o f y  such that F t 7r~l(V) is a trivia1 
vector bundle globally spanned by Hamiltonian vector fields. Then AnF[ rCDI(V) 
is trivial and, for each integral manifold A o l D  contained in 7rDI(V) the 
canonical flat connection in AnF [ A has vanishing hotonomy group. Since 
X/AnF[ A is a double covering of AnF[ A, for each A G 7rDI(V), the holonomy 
group of  the canonical flat connection in ~/AnFt A is the multiplicative 
group consisting of t and - 1 .  Further, the parallel transport along the 
orbits of  ~ yields a continuous function on 7@I(V). Since this function takes 
on values -+1, it must be constant. • 

Proposition 3. 7. For a complete strongly admissible polarization 
F, So = Xo and, for each k ~ {t . . . . .  d} and each x ~ Sk, the 
integral manifold of  E through x is contained in Sk. 

Proof By Proposition 3.4, the integral manifold of  E passing through 
x ~ Xk is contained in Ark. Since all integral manifo[ds of  D contained in X0 
are contractible, it follows that the holonomy group of  the flat connection 
in (L ® x/AnF) [ A vanishes, for each integral manifold A of  D contained 
in X 0. Hence X 0 = S o. 

Consider the case k >/1. By Lemmas 3.1 and 3.2, there exist a contractible 
neighborhood Vy of  ~rD(x ) in X/D such that co 1 7rDl(Vy) is exact, and k 
linearly independent Hamiltonian vector fields y~1 . . . . .  y~k in K[  7rDl(Vy) 
with periodic orbits with period 1. Since co t ~r~l(Vy) is exact, it follows that 
the curvature form of the connection in L I ~DI(Vy) is exact, so that L 1 ~DI(Vy) 
is a trivial line bundle. Let L* denote the bundle over X obtained from L by 
the removal of  the zero section and C* denote the multiplicative group of  
nonzero complex numbers. Triviality of  L t 1rD~(Vy) implies that there exists a 
mapping p: L* I ~rg(Vy) ~ C* and a 1-form 0 on ~@l(fzy) such that the 
connection form in L* I ~DI(Vy) is given by a = (1/2~ri)(dp/p) - h-l~r*O, 
where 7r: L* t ~DI(Vy) -+ ~@l(Vy) denotes the fiber bundle projection. The 
relation between co and the curvature form of  the connection in L implies 
col~Dl(V)=dO Therefore, by Lemma 3 2, for each i @ {1, , k}, the 

Y . ' . . . .  . ,  

vector field v~ ~ is the Hamiltonian vector field of  the function vff such that, 
for each x '  E rrDl(V), J i ( x ' )  is equal to the integral of 0 over the orbit of  
y~i through x ' .  On the other hand, the element of  the holonomy group of  
the connection V in L corresponding to the parallel transport along the orbit 
Ofy~J through x '  ~ @l(Vy)  is given by exp[(27ri/h) yfi(x')]. I_emma 3.6 
implies that we can choose V v small enough so that the elements o f  the 

/~n  -- • 1 k holonomy group o f @  Fdef ined  by the orblts o f y ~  , . . . ,  y~ are con- 
stants yc 1, . . . ,  ye k which are equal to 1 or - 1 .  The following relations are 
the consequence of  the definition of S: 

(x'  E S 63 7@l(Vy)} ~ {yc] exp[(2ni/h)yjq(x')] = 1, for al t]  = 1 . . . . .  k} (3. t )  

and 
(x'  ~ X k  63 %1 (V:v) and y# exp[(2m/h)yf (x)] = 1 for alt j  = 1 , . . . ,  k} ~ x '  CSk 

(3.2) 
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Moreover, the functions s f l , . . . ,  s f  x are independent of  nDl(Vs)because 
their I-tamittonian vector fields are linearly independent and they are constant 
along E I nDl(Vs). 

Let M denote the integral manifold of  E passing through x. For each 
E M  we have a neighborhood Vy o f ~  = 7rD(2 ) CX/D and k functions 

yfa . . . .  , ~fk defined on nDa(Vy) which are constant along E I n~l(V~), 
independent, and satisfy the relations 

(x' E S  n n~l(Vf)} ~ {~ci exp[(2~ri/h) pfi(x')] = 1 for a l l /=  1 . . . . .  k} 

and 

{x' E X  k n 1@1(V~) and pc / exp[(2~ri/h)ffl(x')] = 1 

for all]  = 1 , . . . ,  k} ~ x '  CSk  

Hence, 2 ~ S~ N M i f  and only i f M n  nDI(V~ ,) _~ Sk A M  which implies that 
M N Sk is open and closed in M in the induced topology. Since the manitbld 
topology on Mis  finer than the induced topology and M is connected, it 
follows that M n Sk is either empty  or equal to M. By hypothesis x ~ M  G Sk 
so that M n Sk = M. Hence, M ~ Sk. • 

Proposition 3. 8. If F is a complete strongly admissible polarization 
then the Bohr-Sommerfeld set S is closed in X. 

Proof If S = X, it is closed. If S • X, we show that X - S is open. Let 
x E X - S and k = dim K x. Then k > 0 since X0 - So = ~. L e t  y f l ,  . . . .  yfk 
be functions defined in a neighborhood nDI(V),) o f  X, where y = 1to(x), 
satisfying (3.1) and (3,2). Since x q~ Sk, there exists j C {1 . . . .  , k} such that 
sc] exp{(27riJh) y)q(x)) 4= 1. Then there exists a neighborhood W o f x  con- 
tained in ~@~(Vs) such that sc ] exp[(2~/h)sfl(x')] ~ 1 for all x '  ~ g( This 
and the relation (3.1) imply that W -~ X - S. Hence X - S  is open and S is 
closed. • 

Proposition 3. 9. Let F be a complete strongly admissible polariza- 
tion, x ~ Sk and V a neighborhood of  ~r~(x) E X/D such that ~rDa(V) 
admits a canonical extension o f K  IXk n 7rDI(V) to a distribution 
vK on 7@1(V). Let Q be the integral manifold of  ~"TrD(v K±) passing 
through ~o(x). Then, X k C) ~,~I(Q) ~ Sk and there exists an open 
set VinX/D such that Q -~ V c Vand  S N n~l(l~) _~ n~l(Q). 

Proof If  k = 0, Q is a zero codimensional submanifold of  V c X/D so that 
Q is an open set in V containingy. Then we can take l~ = Q and the conditions 
Q --- V ~ V and S N ~@~(V) _~ nD~(Q) are satisfied, and X o N ~rD~(Q) c So 
because So = Xo. Let us assume now that k ~> 1. For e a c h y  ~ V, there exists 
a neighborhood V s o f y  contained in V and k functions s f  ~, . . . ,  s f  k on 
~rD~(V) satisfying the relations (3. t)  and (3.2) in the proof  of  Proposition 3.7 
and such that their Hamiltonian vector fields span vKI ~rD~(Vs) and have 
periodic orbits with period 1. Further, v K± ] nD~(Vs) is characterized by the 
condition: u ~ v K± I ~rD~(Vy) if and only if u -  y f a  _ u " y f 2  . . . . .  lg . y f ~ .  
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Therefore, the functions yfx . . . . .  y f k  are constant on integral manifolds of  
vKllzr;91(Vv). Since y c l , . . . ,  vc ~ are constant on rrDa(Vv), it follows that  
yC/exp[(2zr/'/h) yfJ] is constan't on integral manifolds of  v K  ± t z61(Vy), for 
each]  E {1 . . . . .  k}. In particular, zrDl(Q) is the integral manifold of  v K  ± 
passing through x and it satisfies 

yC j exp[(2z6/h) y f  j] [ rcDl(Vy ¢3 Q) = 1 (3.3) 

for each~ ~ ( 1 , . . . ,  k} and eachy  E K This and (3.2) imply that 
Xg N r@ (Q) -- Sk. For each y ~ Q, let ICy denote the open subset of  
zrDl(Vy) defined b y x ' @  Wy if  and only if [yf](x') - y f ] ( 2 ) l < h / 4 z r  for 
each ] E (1 . . . . .  k}, where 2 is an arbitrary point of  ZrDI~V). Since the functions 
y f l  . . . . .  y f k  are constantalong integral manifolds o f D  I rrDl(Vy), 
W,y = zr291(zrl)(Wy)). Put V = UyTro(W,y,). Then WyWy = 7r~l(V). For each . 

X E 1 ~ ' " '  ,] zr~ (V) - Q, the definmon of Wy s and the fact that the constants yC 
+ . • . • t . 

are equal to -1 ~mpty that yCl exp [(2m/h) j T ( x  )] :~ 1 for all] E (1 . . . . .  k} 
and a l ly  such that  x'  E IVy. Clearly, Q -~ ~ - ~  V, and (3.1)implies that  
S (3 7r31(~ ") _ rrDl(Q). " 

Propositions 3.7, 3.8, and 3.9 imply Theorem 2.4. Hence it remains to 
prove Theorem 2.5. First, we need the following lemma. 

Lemma 3.10. Let F be a complete strongly admissible polarization 
of  (X, co). For each x ~ Sg - Int Xk ,  where Int Xg denotes the 
interior o f  Xg, and each neighborhood W of  x, W A X g÷ l  C3 S=/= ~. 

Proof. Let x E Sk -- Int Xk ~ Xg - Int  Xk. Since X k = Xk U X k + 1 is 
open, each neighborhood o f x  has a nonempty  intersection with X k + 1. 
Hence x belongs to the closure of X k + 1, x ~ C1 X k + 1. Further, X k + 1 = 
Xk  + 1 tA X k+2, so that either x E X ~+2 or x E C1X k +1 and there exists a 
neighborhood W o f x  such that W A X k+2 = ~J. If  W (~X k+2 = ~ then, since 
X k+l is open, W N X  k+l = Wr3(Xk+I  U X  k+2) = W('IXk+I is an open set 
contained in Xk+ 1 and containing x in its closure. Therefore, x E C1 (W A 
Xk+l)  --~ C1 (Int Xk+l).  Hence, x C C1 X k+l implies either x E C1 (Int Xk+l)  
or X E X k+2. If  x C C1 X x+z, we can repeat this process to get x ~ C1 (Int Xk+2) 
or x E C1X k+3, and so on. Since X d = X d is open, it follows that there exists 
an integer l > k such that x E Ct (Int  Xt). 

Let Vy be a neighborhood o f y  = ~rD(X ) in X/D such that 7rDl(Vy) admits k 
functions y f t  . . . .  , y fx  satisfying (3.1) and (3.2) in the proof  of  Proposition 
3.7. The Hamiltonian vector fields y~l, . . . .  y~k of y f l  . . . . .  y f k ,  respec- 
tively, are in K and have periodic orbi~.s with period 1. Since, for some l > k, 
x C C1 (Int XI) there exists a contractible set V ~- Vy N 7rD(Int Xt) contain- 

1 i ngy  in its closure and l independent functions g . . . .  , gZ on ZrDI(V) such 
that their Hamiltonian vector fields ~ . . . .  , ~t are in K and have periodic 
orbits with period 1, for each]  ~ ( 1 ,  . . . ,  k}, f i l~rDl(V)  =gi, and 

{x' ~ S N zrDl(V)} # c] exp [(2zri/h)gJ(x')] = 1 for all ] = 1 . . . . .  l (3.4) 

where c 1 . . . .  , c I are the elements of  the holonomy group of X/AnF defined 
by the orbits of  ~a . . . . .  ~ ,  respectively, and cJ = yCJ, for each ] ~ ( 1 , . . . ,  k}. 
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° * ' ,  i ! " ~ - ~  Suppose that, for each]  E {k + 1, l}, g (x ) ls not bounded as x x. 
Let Q be the integral manifold of  ~'-7rD (g  K ±) passing through rrD(X ). For 
each neighborhood IV of x, ~rDI(.Q) C~ W ~VZrD~(V) is a k-codimensional sub- 
manifold of  IV C~ ~rDI(V). Since, by hypothesis, there exists a sequence 
Xm ~ x  such that lgJOcm) [ ~ % for ]  ~ {k + 1 . . . .  , l}, and the restrictions to 
rrD~(Q ) N IV N ~rDI(V) of  the functions g g + ~ , . . . ,  g~ are real and continuous, 
the set 

• j ¢ ~ "  " {x'CZrDl(Q) r~ i fA~rDl (V)[c /exp[ (2m/h)g(x ) ]  = 1 f o r a l l / = k +  1 . , l}  
(3.5) 

is not empty.  However, the relations (3.3) and (3.4) imply that the set (3.5) 
is contained in S. Hence, for each neighborhood I f  of  x ,  S r3 If  ~ r@t(V) ~ ~, 
which implies that S N IV A X k+l =/= ~). 

It remains to prove that, for each]  E {k + 1 . . . . .  I}, [gl(x') [ is unbounded 
as x '  -* x. Without loss of  generality, we may assume that D [ zr/~ I (gy) is 
globally spanned by Hamiltonian vector fields so that we have an action of 
R a on rrJ(Vy)  denoted by ~ :  Na x lrDl(Vy) ~ ZrDl(Vy) which preserves the 
restriction of  co to ~'DI(Vy). For each x '  E 7rDl(Vy) the integral manifold 
Ax, o f D  th roughx '  is diffeomorphic to the quotient of  R d by the isotropy 
group Gx,, and we denote by ax,: Ra/G x, ~ Ax, the canonical isomorphism. 
For each]  E {k + 1 . . . . .  l} we define a function ~]: ZrDI(V) ~ R a by 
~J(x') = 5 a  x} (}J(x')), for each x '  C 7rDI(V). Since the vector fields 

• - ] t ~k+l , . .  -, ~t have periodic orbits with period I, ~o ( x )  E Gx' for each 
x '  E 7rD1 (V) and e a c h / ~  {k + 1 , . . . ,  l}. We shall show first that [ ~0J(x') [ ~ o o  

as x '  ~ x, for all / E {k + i . . . . .  l}, where [ ~](x') I denotes the Euclidean 
norm of the vector ~0/(x') E R a. Suppose that, for some / E (k + 1 . . . . .  l}, 
1 ~fl(x') [ does not tend to infinity as x '  ~ x. That is, there exists a constant 
c > 0 such that, for each neighborhood W of x, there exists x '  E W satisfying 
t ~i(x') I < c. Hence there exists a sequence {Xm} in 7rDI(V) convergent to x 
such that ~d(Xrn) converges to a vector lira ~J(x) E R a. The continuity of  
the action • o f  Na on 7rDI(Vy) and the relation ~J(Xm) C Gxm for each 
rn E Z ÷ imply that lim ~¢(x) @ Gx. Since Gx has rank k and the vectors 
y~l(x), . : . ,  y~k(x) span Kx, each element of Gx is a linear combination of  
~-ax  ~ (~ (x ) )  . . . . .  ~-C~xl(~k(x)) with rational coefficients so that 
lim el(x) = E~e-_lai ~x~l(~i(x))  for some rational numbers al  . . . . .  ak. On 
the other hand, for each m E Z +, ~]Ocm) is linearly independent of  
~'°~-lxm (~l(Xm)), . .., °J-axl (~k(Xm)). The action • of ~d in zrD~(Vy) 
includes a local diffeomorphism qs: Na x Vx ~ ZrDl(V~), where V~ is a 
neighborhood o f y  contained in Vy admitting a section o: V~ ~ ~@~(V1) 
such that o(y) =x.  ~he mapping q5 is defined by q~((t~ . . . . .  td) ,y ' )  = 
q'(( t l  . . . .  , ta), o(y')~ for e achy '  ~ V~. Let B x Va - R a x V1 be a neigh- 
hood of (0, y )  such that • [ B x V2 is a dift?omorphism o f B  x / / 2  onto its 
image ~(B x V2). Then, for each x '  C 7ro~(V;), Gx, CtB = {0}. Since 
a l , . . . ,  a~: are rational numbers, there exists a positive integer N such that 
Nal . . . . .  Nag are imegers. Then, for each rn ~ ~÷, the vector Sm = N[~Pi(Xrn) - 
~,~[=~ai ~-C~x~ (~i(Xm))] is different f romzero,  is contained in Gxm and 
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S m ~ 0 as m -+ ¢~. Hence, for m large enough, x m E ~@a(V2) ands  m E B ,  
which leads to contradiction with the assumption that Gx, N B = {0} for all 
x '  E 7rDI(v2). Therefore, ] ~o](x') ] -+ ~ as x '  ~ x, for each ] = k + 1 . . . . .  l. 
The set {(~o g +l(x')/Iq~k+l(x'){ . . . .  , q~l(x')/hol(x'){){x'  e 7fDl(m)} is 
bounded in •d(t-k).  Hence, there exists a sequence Xm ~ x and l - k 
vectors v k + l , . . . ,  v l in D x such that, for each]  E {k + 1 . . . . .  l}, 
}i(Xm)/{ ~](Xm) [ ~ v] as m -+ oo. 

It follows from Lemma 3.1 that we may assume, without loss of  generality, 
the existence of a 1-form 0 in zrDl(Vy) invariant under the action of  N a, 
such that co I rrDX(Vy) = dO and O(vJ) > 0 for each]  E {k + 1 . . . . .  l}. By 
Lemma 3.2, for  each]  E (k + 1 . . . .  , l}, the vector field ~i is the Hamiltonian 
vector field of  0(~J). Since ~] is the Hamiltonian vector field o fg i ,  the function 
0(~]) - g ]  is constant along D[  rrD 1 (V) and V is contractible, it follows that 
there exists a constant bJ such that g] = O(~J) + hi. Moreover, 

lim [~](Xm)/l~oJ(xm) l] = v], O(v]) > 0 and lim t~](Xm) [ = oo 

imply that  I O(~](xm)) { -+ co as x m -+ x. Hence, the function I g](x')  [ is un- 
bounded as x '  -+ x. This completes the proof  of  the lemma. • 

Theorem 2.5 states that, for a complete strongly admissible polarization 
F such that F =/7, dim ~ >  0 if and only if S 4= ~. Clearly, S = ~b implies 

= 0. Suppose that S 4: ¢} and let k be the largest integer such that  Sg @ ¢). 
We shall show that oUt'ok 4= ~. If Sk (3 Int  Xk 4= ¢1, then there exists an open 
set V in X / D  and an integral manifold Q of  TZrD(V K l )  such that  Sg C3 
Int Xk A 7rDI(Q) v e Oand Ark N 7/'DI(Q) ~ S k . Therefore, Sk f )  ~'DI(Q) has 
nonempty  interior in 7rDI(Q). Let X ® v be a smooth section of 
(L ® X/AnF) { zrDl(Q) covariant constant along F{ Q with nonempty  
support contained in Sk ¢3 7rDt(Q) which projects to a compact set in 
X/E. Such a section exists because the condition F = F implies that F is 
the complexification of D, and therefore X ® u is covariant constant along 
F if and only if  it is covariant constant along D. Moreover, there exists a 
nonzero covariant constant along D sections of  (L ® x /AnF)  [ 7rDI(Q) 
provided Sk (3 7rDI(Q) has a nonempty  interior in 7rDI(Q). The condition 
that the projection to X / E  of  the support of  X ® v is compact  and the 
assumption F = t7, which is equivalent to E = D, imply that  the integral (2.6) 
converges. Since the support  of  X ® p is not empty,  X ® v :~ 0, so that 
~ 0  k v e 0. Hence dim ] t ° ~  > dim ~ 0  k > 0, which completes the p roof  of  
Theorem 2.5. 
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