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Abstract

The structure of the space of wave functions in the representation given by a complete
strongly admissible polarization of the phase space is investigated. The conditions that
the wave functions should be covariant constant along the real part of the polarization
define the Bohr-Sommerfeld set of the representation containing the supports of all
wave functions. There is a natural scalar product for the wave functions defined on the
Bohr-Sommerfeld set. It is shown, for a real polarization, that the resulting Hilbert
space of wave functions is not trivial if and only if the Bohr-Sommerfeld set is not
empty.

1. Introduction

Let X denote a manifold representing the phase space of a classical system
and w a symplectic form on X defined by the Lagrange bracket. The canonical
quantization of the system (X, w) requires the notion of a classical counter-
part of a complete set of independent commuting observables. As classical
observables one could choose real-valued smooth functions f on X such that
their Hamiltonian vector fields ¢, defined by

£ lw=—df a.n

are complete. Therefore, a complete set of independent commuting observ-
ables would be a set of 7 = § dim X functions f3, . . ., f,, on X, independent
at all points of X, such that their Poisson brackets vanish, i.e.,

w(éf{., f:,;j‘:() = 0: Zs] = ]: ce 1l (}’2)
and the vector fields Efﬂ . éfn are complete. However, for many phase
spaces of interest, there does not exist such a set, and one has to relax the
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616 SNIATYCKI AND TOPOROWSKI

assumptions. If one drops the conditions that f;’s should be real and globally
defined, one is led to notion of a polarization of (X, w). Note that the vector
fields &, - - -, &, span over complex numbers an involutive complex
distribution F on X such that dim¢ F = n and w restricted to F* vanishes
identically.

The wave functions in the representation defined by a polarization F are
“square integrable” sections of a certain complex line bundle over X,
covariant constant along F. The condition that the wave functions should
be covariant constant along the real part F N F of the polarization F defines
a subset of the phase space, called the Bohr-Sommerfeld set of the rep-
resentation, which contains the supports of all wave functions. The structure
of the Bohr-Sommerfeld set for a complete strongly admissible polarization
is studied here in detail. It is shown that there is an intrinsically defined scalar
product in the space of sections of the complex line bundle defined over the
Bohr-Sommerfeld set and covariant constant along the polarization. If the
polarization is real, the resulting Hilbert space of wave functions is nontrivial
if and only if the Bohr-Sommerfeld set is not empty. For partially complex
polarizations, which correspond to a generalization of the representation in
terms of analytic functions used by Bargmann, (1961), there could be
additional conditions on the supports of the wave functions due to the
requirement that they should be analytic in some variables. This problem
requires further investigation.

The analysis of the structure of the space of wave functions is carried
here within the framework of the theory of geometric quantization. This
theory, introduced by Kostant {1970), provides a unified treatment of the
construction of irreducible representations of connected Lie groups. On the
other hand, it enables a theoretical physicist to carry the process of canonical
quantization in such a way that all the structure used in the process is
specified in geometric terms. This aspect of the theory extends the theory
developed independently by Souriau (1970). The notion of a polarization of a
symplectic manifold first appeared in the work of Auslander and Kostant
(1971) on the representations of solvable Lie groups. The complex line
bundle over X such that its sections covariant constant along the polarization
are appropriate candidates for the wave functions is specified in the paper by
Blattner (1973), summarizing the development of the theory of geometric
quantization. The results obtained here are generalizations of the results of
Sniatycki (1975), and Toporowski (1976).

The representation adopted in this paper is essentially self-contained as
far as the theory of geometric quantization is concerned. However, we make
use freely of the standard mathematical techniques of differentiable mani-
folds, topology, etc. The next section contains definitions and statement of
the results. Proofs of the results obtained are contained in Section 3.

2. Definitions and Results

A polarization of a symplectic manifold (X, w) is a complex involutive
distribution ¥ on X, i.e., an involutive subbundle of the complexified tangent
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bundle ¢X of X such that w restricted to F vanishes identically, w | Fx F =0,
and dimension of F N F is constant, where F denotes the complex conjugate

of F. The complex distributions # N F and F + F defined by a polarization F
are complexifications of some real distributions denoted by D and E, res-
pectively,

FNEF=Dp®  F+F=FE°® .0

Since D is the intersection of involutive distributions, D= FNF N JX, it is
an involutive real distribution on X. Let X/D denote the space of integral
manifolds of D and np: X — X/D the canonical projection. A polarization F
is said to be strongly admissible if E is an involutive distribution and the
spaces X/D and X/F of integral manifolds of D and E, respectively, are mani-
folds such that the canonical projections np: X = X/D, 1g: X —~ X/E, and
g p: X/D - X/E are submersions.

Proposition 2.1. For a strongly admissible polarization # each
integral manifold A of D has a canonically defined global paral-
lelism such that the parallel vector fields commute. Parallel vector
fields in A are the restrictions to A of the Hamiltonian vector fields
in D.

A strongly admissible polarization F is said to be complete if the parallel
vector fields on the integral manifolds of D are complete. For each positive
integer k, we denote by T* the k torus, i.e., the quotient of R¥ by the
discrete subgroup of R generated by the canonical basis in R¥. The k torus
has a canonically defined global parallelism in which parallel vector fields
are the projections of constant vector fields in R¥. Thus, the product
R! xT* has canonically defined global parallelism and the parallel vector
fields in R! xT* are complete.

Proposition 2.2. Let F be a complete strongly admissible polariza-
tion of (X, w). For each x € X the integral manifold A of D through
X is isomorphic, as a manifold with a global parallelism, to the
product R4-* x T* for some integer & such that 0 <k <d = dim D.

Let, foreach k €{0, 1, .. ., d}, X} denote the subset of X consisting of
all the points x € X such that the integral manifold of D through x is
isomorphic to R9-% x T¥ and let X* = U, ;. X;. For each x € X, we denote
by K, the subspace of D, spanned by all v €D, such that the parallel vector
field, in the integral manifold of D through x, extending v is periodic. Clearly,
for x € Xy, dim K, = k. Let K,.* be the subspace of 5 X defined by

Klt=ue 7. X w,v)=0forallv €K} (2.2)

Further, let K = U,c x K, and K* = U, e xK,* . In general, neither K nor Kt
are distributions since their dimensions may vary from point to point.

Theorem 2.3. Let F be a complete strongly admissible polarization
of (X, w). Foreach k €{0, 1, .. ., d} the following hold:
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(A) X* is open in X.

{B) Ifx € X, then the integral manifold of £ through x is con-
tained in Xp.

(C) Foreach y € mp(Xy,) there exists a neighborhood ¥ of y in
X/D such that the following hold:

(i) Foreach x € n5! (V) N X the integral manifold of £ through
x is contained in 75! (V).

(ii) There exists a canonical extension of K| X, N7apl(¥)toa
k-dimensional involutive distribution 1K on m5' (V) invariant under
the action of the Hamiltonian vector fields in £'{ np* (V), and con-
tained in K | 75! (V). The integral manifolds of K are diffeomorphic
to TX. For & 2 1, here exists a unique density & on K invariant
under the action of the Hamiltonian vector fields in £ | w5 (¥), and
associating to each integral manifold of K the total volume 1.

(iii) The distribution ,K* defined by

vKL=u€ T X \xenp (V), wu,v)=0forallvE€ K.} (2.3)

is a k-codimensional involutive distribution extending K* | X, N w5 (V)
and it projects to an involutive k-codimensional distribution 7 7 p(,K*)
on V.

Let L denote a complex line bundle over X with a connection V such that
the curvature form of V is equal to the pull back of A 1w, where & denotes
Planck’s constant, and with a V invariant Hermitian form <,». Such a line
bundle exists if and only if 27w defines an integral de Rham cohomology
class and, if this condition is satisfied, the set of all equivalence classes of
line bundles with connection having this curvature form can be parametrized
by the group of all unitary characters of the fundamental group of X (Kostant,
1970).

Let #F denote the bundle of linear frames of F, where elements of BF
are ordered n-tuples of linearly independent vectors in Fy, for some x € X.
The bundle #F is a right principal Gl(n, C) fiber bundle over X, The nth
exterior product of F is a complex line bundle A*F over X. It is a fiber bundle
associated to #F with the typical fibre C on which GI(n, C) acts by multipli-
cation by the determinant of the corresponding matrix. We shall need a
complex line bundle \/A"F defined as follows: Let Mi(n, C) denote the
double covering group of Gi(n, C) and p: Ml(n, C) = Gl(n, C) the covering
homomorphism. A bundle of metalinear frames of £'is a right principal
Mi(n, C) fiber bundle ZF over X together with a map 7: ZF — BF such that
the following diagram commutes:

BF x Mi(n, C)~ BF

[ro ]

BF x Gl(n, C)~ BF
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where the horizontal arrows denote the group actions. The existence of a
metalinear frame bundle of F'is equivalent to the vanishing of a class in
H?(X, Z,) characteristic of #F. Let x: Mi(n, C) ~ C be the unique holo-
morphic square root of the complex character det © p of Mi(n, C) such that
x(D) = 1, where I denotes the identity of Mi(n, C). The bundle \/A"F is the
fiber bundle over X associated to Ml(n, C) with standard fibre C on which
Mi(n, C) acts by multiplication by x(4), 4 € MI(n, C). In geometric quantiza-
tion, one works traditionally with the bundle (N)Y2(TX/F)* of half-forms
normal to F, introduced by Blattner (1973), which is isomorphic to \/A"F
In Sniatycki (1975) a bundle isomorphic to the dual of /A*F was used. We
find it more convenient to work with \/A"F. The space of sections v of
VAIF s isomorphic to the space of functions »* BF~C satisfying the
condition p#(5 - 4) = x(A =1 w#(b), for cach b € BF and each A € Mi(n, C).
A strongly admissible polarization can be locally spanned by Hamiltonian
vector fields (Nirenberg, 1957). A local section 8 of #F is called a
Hamiltonian metalinear frame field of F if its projection to a section of

AF consists of an ordered n-tuple of Hamiltonian vector fields spanning .
There is a canonically defined operator ¥ of partial covariant differentiation
of sections of v/A"F in direction F such that a section » of \/A"F is covariant
constant along F if, for each Hamiltonian metalinear frame field § of F, the
function »# 0 § is constant along F (Simms, 1974).

The connection in L and the operator of partial covariant differentation
of sections of v//A"F in the direction F define an operator of partial covariant
differentiation of sections of L&+/A"F in the direction F which will be
denoted by V. For each integral manifold A of D the operator ¥ induces a
flat connection in (L®~\/N'F) | A. The Bohr-Sommerfeld set § is defined
as the union of all integral manifolds A of D such that the holonomy group
of the flat connection in (L&+/A"F)| A vanishes. If A® v is a global section
of L®+/N"F covariant constant along F, then it is covariant constant along
D so that Mx)@u(x) =0 forx ¢ S. Foreachk €{0, 1, .. .,d}, we denote
by S} the intersection of § with X, S, =S N X,.

Theorem 2.4. et F be a complete strongly admissible polarization
of (X, w) and S the Bohr-Sommerfeld set defined by the operator
V of partial covariant differentiation of sections of L&+/AN*Fin
the direction F. The following hold:

(A) S is closed.

(B) So =X, and, foreach k €{1,...,d} and each x € Sy, the
integral manifold of £ through x is contained in Sy.

(C) Given any point x € Sy, let V' be a nelghborhood of mp(x)
in X/D admitting a canomcai extension of K| X Nap (V) toa
distribution K on w5 (V) [ef. Theorem 2.3(C)], and let Kt be
the involutive distribution on 5! (V) defined as in Theorem 2.3.
If Q denotes the integral manifold of J7p(y K*) passing through
p(x), then there exists an open set ¥ in X/D such that Q SV SV
and
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(@) SN (V) < 75'(Q)
(b) Xp N 7701 (@)= Sk.

Foreachk € {0, 1, ..., d} consider the space of (discontinuous) sections

A®v of LO+/N'F satisfying the following conditions:
I Support of A®v is contained in Sy.

II. Foreach x €Sy, the restriction of A®w to n5}(Q), where Q is the
integral manifold through mp(x) of the distribution F (KL, for some
neighborhood ¥V of 7 (x), is a smooth section of (L&A"F) | n5H(Q)
covariant constant along F | 75 (Q) N Sg.

IL. The projection to X/E of the support of A& v has a finite number of
connected components.

This space has a canonically defined pre-Hilbert subspace #,* with a scalar
product {-]-); described below. Let A ® v, and A, ® v, be two sections
satisfying the conditions 1, II, and III. Then, there exists a finite number of
open sets TpH(VY), . . ., mpt (V) in X such that each 75 (V;) admits a distri-
bution 3K and the supports of M@ vy and A, @ v, are contained in the
union of sets of the form »p}(Qy), i€ {1, . . ., s}, where Oy, . . ., O, are
integral manifolds of Imp(y K), ..., ﬂ-TrD(VSKi), respectively. For each
i€{l,..., s} weassociate to the pair of sections A;®»; and A, ® v, a
density (A ®@ vy, A2 ®v,)g, on Q; in the way given in Sniatycki (1974). Let
x € 1pH(0;) and consider a basis in 7, X of the form

1y e oy Vs Ups oo s Uy @s Uty e« s U Wiy - - -, Wg) (2.4)

satisfying the following conditions:
(1) Foreachj,I€{l,....,d}andm€{l, ... nd}

w(vj, wp) = 8y, Uy, wp) =0, w(wy, wi) =0

(2) (vy,...,vx)is a basis in v;Kxsuch that yx(vy, . .., v) = 1.

(3) (vy,...,vg)is a basisin D,.

4 b={vy,..., g4, Uy, - - - Up-g) is a basis in F; and, for each
IIE{l, ... n~d}, | w(uy, uy)| = 8;;, where u; denotes the complex con-
jugate of u;.

(5) (?11, e Vg iy, Uy g, ﬁl, ey 53"!—@) Whtlse-ns Wd) is a basis

in 75C15'(Q;).
This basis yields a basis

(Tap(u), . - Taplun-g), Tapiy), . .., Iap(n-g)
g-T{D(Wk'f‘l)’ s yﬂD(Wd)) (2'5)
in 7°CQ; at mp(x). Let bhe éFx be a metalinear frame of F at x projecting

tob =(vy, ..., g, Uy, - . -, Un-q). The value of the density (\;@vy, A B vydg,
on the basis (2.5) in F “Q;, at 7 (x) is defined to be

N66), Mg (x)) 1 #(B) v, #(b) (2.6)
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Following an argument similar to that in Sniatycki (1975) one shows that the
expression (2.6) depends only on the basis (2.5) in 7 ©Q; at np(x) in such a
way that, under the change from the basis (2.4) to another basisin 7 °Q; at
7p(x) which comes from a basis in Z,©X satisfying conditions {1)-(5), it
transforms as a density. Hence, (A ®v1, My ®vy)g, defined by (2.6) is a
density on ;. 1t is a smooth density since one can choose locally smooth
linear frame fields for 7 ©X satisfying conditions (1)-(5) and lift the result-
ing local linear frame field of  to a smooth local metalinear frame field
of F.

Let H#y* denote the subspace of the space of sections of L&+/A"F
satisfying conditions I, II, and III and such that, for A\® v € H#,*

@212 =2 [ (@, @), <= @7

where, for each i, the integral is taken over the manifold g; and the sum-
mation is taken over all distinct manifolds Q; such that 75'(Q;) intersects
the support of A®w. The scalar product in #G¥ is defined by

M ® vy [M®@vy) =2 J M@ vy, M, @y, (2.8)

Clearly, this scalar product defines in #,* the pre-Hilbert space structure.
Let ¥ denote the Hilbert space obtained by the completion of #y* with
respect to the norm (2.7). The space

H=Q®F_ A" 2.9)

is the Hilbert space of the wave functions in the representation given by the
complete strongly admissible polarization F.

Theorem 2.5. Let F be a complete strongly admissible polarization
such that F =F Then, #7 0 if and only if the Bohr-Sommerfeld
set S'is not empty.

3. Proofs

Let I be a strongly admissible polarization of (X, w). Let fy, .. ., fy be
coordinate functions defined in an open set Uin X/E, where d = dim D =
dim X/E. Foreachi €{1,...,d} we denote by & the Hamiltonian vector
field of the function f; © mg on mgH(U). The vector fields £, . . ., &4 com-
mute and span D | 7~ (U). Hence, for each integral manifold A of D con-
tained in 75 (U), the restrictions to A of &1, . . ., &7 are commuting vector
fields that span the tangent bundle space of A. This definesin A a global
parallelism such that the parallel vector fields in A commute and they are
the restrictions to A of the Hamiltonian vector fields in D. Clearly, the
global parallelism in A defined here is independent of the choice of chart in
X/E. Thus, Proposition 3.1 has been proved.
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Let F be a complete strongly admissible polarization. Then, the
Hamiltonian vector fields £1, . . ., £ in D |75 (U) are complete. Let, for
eachi €{1,...,d}, ¢/ denote the one-parameter group of diffeomorphisms
of ngH(U) generated by &. The commutativity of the vector fields &1, . . ., &
implies that the diffeomorphisms ¢/f and ¢ commute, foreachi,j€{1,...,d}
ands, z € R. Since £ are Hamiltonian vector fields, the one-parameter
groups o/ preserve w | m51(U). Therefore, we have an action ¥: R9 x nz1(U)
- 171 (U) of R? on n51(U) preserving the symplecuc form w | mz'(U). This
action is defined by W((¢1, ..., 7g), X) = ep, e <p, (x), for each
(s -5t E Rd and each x E 75 (V). For each mtegral manifold A of D
contamed in 7z (1), the action of R restricted to A is transitive on A.

This follows from the facts that, for each x € A, the mapping ¥,.: R4 -+ A
defined by ¥, (¢1, ..., 1g)= ‘I!((Zl, .. o L), x)is alocal diffeomorphism
and A is connected. Hence, the integral manifold A of D passing through x
is diffeomorphic to the quotient of R9 by the isotropy group G, ofx
defined by Gy = {(t1, ..., 15) ERI|¥((zq,. . ., 14), x)=x}. Since G, is a
discrete subgroup of R9 it is generated by k = rank G, linearly independent
(over R) elements of R, where 0 < k& <d. Thus, R4/G, = R-* x T* and,
therefore, A is diffeomorphic to R9-% x T¥ where T* denotes the & torus.
Note that the diffeomorphism A = R9-% x T¥ maps the parallel vector
fields on A to parallel vector fields on R4~* x T¥. This completes the proof
of Proposition 2.2.

Lemma 3.1. Let F be a complete strongly admissible polarization.
For each x € nz!(U), there exist a neighborhood V of np(x) € X/D
and a 1-form 0 on mp}(¥) invariant under the action of R9 such
that w | 7pH(¥) = d6. Given a basis (v, . . ., vg) in Dy, one can
choose 8 so that 8(vy), . . ., (ug) are preassigned numbers,

Proof. Let V be a contractible neighborhood of np{x) € X/D admittmg a
section 0: ¥ - X of mp, such that o(mp(x)) = x, and contained in ng, (U).
For each t=(ty, ..., tg) ERY, we denote by \I't the diffeomorphism of
g (U) onto itself defined by IIft(x) W(t, x"Y=V({(¢y, . .., tg),x") for
every x' € ng(U). Then, foreacht€ R4, ¥, 00isa sec‘uon of 7, defined
over ¥, and the family {¥, O ¢} of sections of 7y, defines a foliation of
75 (V) transversal to the fibers of mp,. We shall refer to the distribution
tangent to this foliation as the horizontal distribution, while the distribution
tangent to the fibers of mp will be called vertical. Since V is contractible,
the tangent bundle space of ¥ admits a global trivialization. Let %, . . ., lzn.g
be 2n-d = dim V of linearly independent vector fields on ¥, and 1y, . . ., N24-g
the horizontal lifts to 75 (V) of fiys - - ., Tan-a» respectively. That is,

N1, . . -, Nan-qg are horizontal vector fields on w5 (V) invariant under the
actxon of R4 and projecting to 0y, - - -, Nan-g, respectlvely The collection
LTI ,7?2n—d of vector fields on 7y (V) trivializes the tangent

bundle space of 75 (V). Let 74, . . ., T4 be 1-forms on np!(V) defined by
187y =8,/ and 7{n;) = 0, for all z',jE{I, .LdLIE{1, ..., 2n-d}. The
forms 74, . . ., 74 are invariant under the action of R9 and are closed, since
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the horizontal distribution spanned by the 7;’s is involutive and [¢, /] =
[¢5,m] =0, foralli,f€{1,...,d},I€{1,...,2n-d}. Consider the 2-form
wy in wpt (V) defined by wq = w — d(Z¢(f; © mg) - 1;), where f1, . . ., fa
are the coordinate functions on U defining gl .. . & as the Hamiltonian
vector fields of f; © 7g, . . ., fy O g, respectively. Clearly, wy is a closed
2-form invariant under the action of R? and such that, fereachi€ {1, ..., d},
g lw, = 0. Hence, wy = mp*&, for a unique closed 2-form &; on V. Since
V is contractible, each closed 2-form on ¥ is exact and there exists a 1-form
61 such that G}l = d@l Then w= d{Ef:l(f, O ’:’!’E)Ti + 61], where 61 = TfD*gl.
Let (vy,...,vg) be abasisin D, and a4, . . ., ag arbitrary real numbers. We
want to choose a 1-form 6 on 75! (V) such that = d0 and 6(v;) = a;, for
eachi€{1,...,d}. Decomposing the vectors £!(x), . . ., £4(x) in terms of

the basis (vy, . . ., vg) we get £(x) = E}iz 1405, foreachi €{1,. . ., d}. Since
the vectors £1(x), . . ., £9(x) form a basis in D,,, the conditions 0(v;) = a;,
foreachi €{1, .. .,d} are equivalent to 8(¢(x)) = a;, where a; = & 1a;a;,
foreachi €{1,...,d}. Let 6 = &L {a;7; + [f; 0 mg — flme(x))] Tij +0;.
Then, df = w | np! (V) and 0(¥(x)) =aj, for eachi €{1,. . ., d}, as required. m

Lemma 3.2. Let F be a complete strongly admissible polarization
and let v € D, be such that the parallel vector field extending v in
the integral manifold of D through x is periodic with period 1.
There exist a neighborhood V of mp(x) in X/D and a vector field £
in D5 (V) such that £(x) = v and the orbits of £ are periodic
with period 1. If w | 75! (V) = d6, then £ is the Hamiltonian vector
field of a function £ on 7y (V) defined as follows: For.each
x' € npl(V), Ax") is the integral of @ over the orbit of & through x'.
If § is invariant under the action of d Hamiltonian vector fields
spanning D | 75" (), then £= 0(%).

Any two Hamiltonian vector fields £ and £2 in nél(V) with
periodic orbits with period I and such that ! (x) = £*(x) are equal
in 754(V;) for some open set ¥, such that mp(x) EV; S V.

Proof. Let U be a coordinate neighborhood of mg(x) in X/E with co-
ordinate functions f3, . . ., fy and the corresponding Hamiltonian vector
fields £2, . . ., & spanning D | n51(U), and V¥, a neighborhood of 7p(x) in
X/D admitting a section 0: ¥V = X of 75 such that o(mp(x)) = x. We use
the notation introduced at the beginning of this section.

Let ®: R x Vo » np'(Vy) denote the mapping defined by ®((z4, . . ., £4), )
=W((ty, .. ., tg), 0(»)), foreach (¢4, . . ., #5) € R4 and each y € V. Clearly,
® is a local diffeomorphism of RZ x V, onto np!(Vy). By shrinking ¥, if
necessary, we can find an open neighborhood W of O € R¥ such that the
restriction of @ to W x ¥ is a diffeomorphism onto &(W x V). This implies
that W N Gg(yy = {0} for each y € Vy, where G,y denotes the isotropy
group of o(y) with respect to the action ¥ of R4 on ngl(U). Since the
isotropy groups of all points of an integral manifold of D are the same, it
follows that W N Gy = 0 for all x € 751 (Vy).

Letsy, ..., sg be the components of v with respect to the basis
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(E1(x), . . ., E%(x)) in D, and A denote the integral manifold of D through x.
The parallel vector field on A extending v coincides with the restriction to A
of the Hamiltonian vector field s; ! + - - - +54£9. Since the orbit of

s €'+ - - +54£9 through x is periodic with period 1, it follows that ¥yisa
diffeomorphism of nz*(U) onto itself that keeps x fixed, where s = (54, . . ., §2).
The set W (B(W x V) N B(W x V) contains x and is open in 75 (V).

Hence, (W x Vo) N ® 1 (¥,0 B(W x V,)) is an open set in R x V con-
taining (0, 7p{(x)), and there exist a neighborhood ¥ of 7 (x) contained in

Vo and a smooth mapping 8: V- W < R9 such that, foreachy € ¥,
Ws(y)(0(»)) = g(o(y)). Therefore, for eachy €V,

Tls = ), 0(7)) = (¥ (y)(0(¥))
=W (V_g(o())) = ¥(s — s, o))
=¥(0, o(»)) = o(y)

Moreover, the isotropy groups of the points on an mtegrai manifold D
coincide. Hence, for each x' € n51(V), s — (ﬂD(x )) € Gy . Let £° be the
vector field in D | 75! (V) such that, for each x’ € 7rD (V) the components
of £%(x") with respect to the basis (é &3 T Ed(x })in Dy are given by
the components of s — f(mp (x")) € R4. S1nce g1 ..., £ are smooth vector
ﬁelds and f © 7y, is a smooth mapping, £° is a smooth vector field. For each
x engl(V), s — Blnp(x")) € Gy which 1mphes that the orbit of £° through
x'is periodic. Let fo be the function on mp (V) that associates to each
x' € np}(V) the period of the orbit of £° through x'. The function fy is 2
continuous smooth nonvanishing function on Trél(V) constant on the orbits
of €2 and fo(x) = 1. The vector field £ = (1/f)£" is 2 smooth vector field on
75}V with periodic orbits with period 1 and such that £(x) =v.

Let 6 be a 1-form on w5 (V) such that w | 75! (V) = d0. Let, for each
x' €np (V) V' {0 1] - 751 (V) denote the mtegral curve of £ passing
through x" and f(x’ ) f 0 Vx ¥0 = $0, where the last integral is taken over the
orbit of & through x". The function f defined in this way is a smooth function
on np (V) and, for each vector field ¢ on 75'(V) we have

1
¢ f=§20=§1c Jao +dEE) = ¢ ) w= § (¢ [y ), £l ()]

Foreachi€{1,...,d}, we have £i-f(x") = O since w(é’ £=0. Dstal,. .y
denote the components of £ with respect to the basis g g= 2 Ll
The functions a;, i€ {1,. . ., D}, are constant along the orblts of £ and, for
eachI€{l,..., 2!2-{2’},

1
w0y = [ wlnlre @, el O])de
4]

g

d »
2 ai(v (O [y O, € [y (D] dt

i=1
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1
S at) | wulre®l, £l ©Dds
i=1 H

d -
= 3 ey, £6)

since, foreach /€ {1, ..., 2n-d}andeach i €{1, .. .,d}, w(n, E)=n; -
(f; © mg) is constant along the orbit of £. Hence, 1; - f = w(ny, §), for all
I€{1,...,2n-d}. This,and & - f=0= w(t, §), foralli €{1, .. .,d},
imply that ¢ _lw = —df. Hence, £ is the Hamiltonian vector field of £
Assume now that 6 is invariant under the action of the vector fields

E s+ . £, Given x" € mpi(V), the Hamiltonian vector field &' =a,(x")&' +

+zzd(x )& agrees with £ on the orbit of £ through x” and £6 = 0.
Therefore on the orbit of £ through x' we have £(8(%)) = ¢’ 0(5) g'? A(¢) +
8([£', £]) = 0. Hence, 6(¥) is constant along the orbit of ¢ through x’ and
the mtegral of @ over the orbit is equal to O(&(x '}) since the orbit has period 1.
Thus, f(x") = §(£(x")), for each x' € 75 (V).

Let E and E be two Hamiltonian vector fields in D} WDI(V) such that
£(x) = £(x) = v and the orbits of £ and £ are periodic with period 1. We
denote by ¢, the one-parameter group of diffeomorphism of TTDI(V)
generated by £ — £. Then, v(x) = x for all € R and gol(x) x' for all
x"€np (V). If ¢q, . . ., cq denote the components of £ — £ with respect to
the basis £, .. ., & and ¢: 1(V) - Rd is defined by c(x) = (cll(x |-
cq(x"), then ¥ [(c,(x"), . cd(x ), x'] = ¢y(x") =x for each x' € n5}(V).
Hence, c(x") € G, for each x €npl(V)and ¢(x) = 0. Since ¢ is continuous
and Wi 1s an open neighborhood of O € R such that W N G = {0}, for each
x €t (M), e Y (W)is an open neighborhood of 7 (x) in Vsuch that £= £
on w5 (e Y(W)). .

Proposition 3.3. If Fis a complete strongly admissible polarization
of (X, w) then, foreach k€{0, 1, .. .,d}, X¥ is open in X.

Proof. Since X° = X, it is open. Assume & > 1. Given a point x € X%, let
vy, . - ., Uy be linearly independent vectors in D, such that the parallel vector
fields extending vy, . . ., vg in the integral manifold of D through x have
periodic orbits with perlod 1. By Lemma 3.2, there exist Hamiltonian vector
fields &, . . ., £ in D, defined in a neighborhood a5 (V) of x such that, for
eachi= 1 .» K, £(x) = v; and the orbits of & are periodic with period 1.
Since &1, . ék are 11nearly independent at x, they are linearly independent
in some nexghborhood W of x. Then, for each x’ € W, dim K, > k, which
implies that W S X*. Hence, X* is open in X. n

Proposition 3.4. 1f F is a complete strongly admissible polarization
then, foreach k €{0, 1, ..., d} and each x € Xy, the integral
manifold M of £ through x is contained in Xj.

Proof. The complex version of the Frobenius theorem (Nlrenberg, 1957)
ensures that, for each x' € M there exist a neighborhood Wof x in X, d real
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Hamiltonian vector fields £%, . . ., #4 spanning D | W and (n-d) compiex
Hamiltonian vector fields 5“1, ., 74 such that, £, ..., 84, ¢, .., ¢nd
span F'| W, Since the Hamiltoman vector fieldsin commute and the
Hamiltonian vector fields spanning D | W can be canomcal]y extended to
complete Hamiltonian vector fields spanning D | mp Y(np(W)), we may assume,
without loss of generality, that W= a5 (V) for a neighborhood ¥ of mp(x")
in X/D. Let, foreachi € {1, ..., n-d}, Re { and Im {’ denote the real
Hamiltcnian vector fields on ‘JTBI(V) equal to the real and the imaginary part
of ¢, respectively. The vector fields Re ¢!, .. ., Re {?-9, Im ¢!, .. ., Im ¢n-d
induce local one- Farameter groups of local d1ffeomorph1sm of T[DI(V)
preserving w | 75 (V) and commuting with the actlon of R on 'ﬁDl(V)
induced by &', .. ., £¢9. Moreover, £!,. .., #4,Re ¢!, .., Re {9 Im (.

Im {9 span £ ﬂ'Dl(V) Hence, there exzsts a nelghborhood v Of ap(x’ ) m
X/D such that ¥ € ¥ and, for eachx” € 75 (V) N M there exists a local diffeo-
morphism of M mapping diffeomorphically the integral manifold of D
through x' onto the integral manifold of D through x”. Hence, the set of all
points in M such that the integral manifolds of D through these points are
diffeomorphic to the integral manifold of D through a chosen point x' € M
is open in M. Since M is connected, it follows that all integral manifolds of D
contained in M are diffeomorphic to each other. Hence, if x €M N X, it
follows that M S X ]

Proposition 3.5. Let F be a complete strongly admissible polariza-
tion of (X, w). For each yy € 1p(Xy) S X/D there exists a neigh-
borhood V of yg in X/D such that the following hold:

(i) Foreachx € nBI(V) M X the integral manifold of £ through
x is contained in w5 (V).

(ii) There exists a canonical extension of K IX e Nt (V) toa
k-dimensional involutive distribution K on 7p (V) invariant under
the action of the Hamiltonian vector fields in £|#p'(V), and con-
tained in K | 75 (V). The integral manifolds of ;K are diffeomorphic
to Tk. For k > 0, there exists a unique density px on VK mvanant
under the action of the Hamiltonian vector fields in £ | 75(V), and
associating to each integral manifold of K the total volume 1.

(iii) The distribution yK* defined by Kt ={u € 7, X|x € np'(V),
wlu, v)=0 for all v € yK, } is a k-codimensional involutive distri-
bution extending K| X N w5 (V) and it projects to an involutive
k-codimensional distribution 7y (y K1) on V.

Proof. Fork=0,K|X, is a zero-dimensional vector bundle over X and
Kt Xg= X1 Xy, so that the statement of Proposition 3.5 is obvious.
Assume k > 1. Since X* is open in X and, for each x € X}, the integral
manifold of £ through x is contained in X%, given yo € np{X3) we can choose
a coordinate ne1ghborhood Uofmgp(yg)in X/E such that nz1(U) € X*. For
each y € 1p(Xy) N b (U), there exists a nelghborhood v, ofy in 71gH(U)
and &k hnearly independent Hamiltonian vector fields yé sewpEin
Klmp (Vy) such that their orbits are periodic with period 1. For each
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x €np'(V, N Vi Np(Xy)), the ordered k-tuples of vectors (,£(x), .

yEF(x)) and (3¢ ), ..., 5£*(x)) form bases for Kx, and they are related
by a nonsingular linear transformation, ,, £'(x) = ,a, (x)yé«’(x) But then,
there exists a ne1ghborhood V of np(x) contamed in¥V,N V such that the
matric coefficients 4;* are constant on 7 Y(7); cf. Lemma 3. 2 Hence, there
exists an open set V5 contammg (Vy YU Vy) N ap(Xy) such that the vector
fields yé e e ygk ana yé s o pEF are related by a nonsingular linear
transformation in 7p (Vyy NV, NVz). Therefore the vector fields yé’ and

51 define a A-dimensional d1str1but10n on 7p (Vyy) Continuing this process
we obtam an open set V' contammg (Uy V) N mp(Xy) such that the vector
fields yé . pEk fory € (U N ﬂD(Xk) span a k dimensional distri-
bution VK m WDI(V) Clearly, K agrees with K on 751(V) N Xy, and for
each x €npl(V) N Xy, the integral manifold of £ through x is contained in

754(V). Since the Hamiltonian vector fields in D commute with the
Hamﬂtoman vector fields in £, the distribution 1K is involutive and it is
invariant under the action of the Hamiltonian vector fields in £'| TIDl( V).
Since the orbits of the vector fields &', . . ., ,£¥ spanning K | m51(V,,) are
periodic with period 1, it follows that all mtegral manifolds of /K are
diffeomorphic to T*. If & is any nonvanishing density on K normalized so
that the total volume of each integral manifold of 3K is 1, by averaging
over the integral manifolds of K we obtain a density p« invariant under
the action of the Hamiltonian vector fields in ,K such that the total volume
of each mtegral manifold of X is 1. This implies that, for each y € 1p(X;) N
WE?(U) vk(5 L. . ., yék) has integral values so that it is constant in
(VN Vy) Hence vk is invariant under the action of the Hamiltonian

vector fields in £ | m5N(1).

Let y K1 be defined by pK*={u E T X|xenpl(V), w(u v) =0 forall
v&€ K, }. For eachy € mp(Xx) N7z (U) we denote by ,f, .. ., ,f¥
functions on 75'(¥,) such that each £ is the Hamiltonian vector field of
W€, ..., k). Then, VK In,SI(V M V) is uniquely characterized by
the foBowmg condltlon For each x € npY(V), u € K, L if and only if

u-yff=u-yf2=---=u- ,f%=0. Hence, K is smooth and integrable,

i.e., involutive. Moreover, K & D {np!(V) implies E | 751(V) < KL
Hence, K+ projects to a k-codimensional involutive distribution I7p(KD)
on V. =

Since Theorem 2.3 consists of the statements of Propositions 3.3, 3.4,
and 3.5, the proof of Theorem 2.3 is completed. Similarly, we shall split

Theorem 2.4 into a sexies of propositions. First we need the following
lemma.

Lemma 3.6. Let F be a complete strongly admissible polarization.
For each y € X/D, there exists a neighborhood ¥ of y in X/D such
that, for each Hamiltonian vector field £ in K | 5! (V) with periodic
orbits with period 1, the function associating to each x € 5 (V)
the element of the holonomy group of v/AF defined by the orbit
of ¢ through x is constant on 75! (F) and it takes on values 1.
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Proof. Using the same argument as in the proof of Proposition 3.4, we
can choose a connected neighborhood ¥ of y such that F [ ap (V) is a trivial
vector bundle globally spanned by Hamiltonian vector fields. Then A"F|apY(V)
is trivial and, for each integral manifold A of D contained in m5'(¥) the
canonical flat connection in AF | A has vanishing holonomy group. Since
V/N'F| Ais a double covering of AF| A, for each A € nj'(¥), the holonomy
group of the canonical flat connection in +/AF | A is the multiplicative
group consisting of 1 and —1. Further, the parallel transport along the
orbits of £ yields a continuous functlon on mp! (V). Since this function takes
on values +1, it must be constant. =

Proposition 3.7. For a complete strongly admissible polarization
F,8,=Xgyand, foreachk€{l, ..., d}and each x € S, the
integral manifold of E through x is contained in Sk.

Proof. By Proposition 3.4, the integral manifold of £ passing through
x € X}, is contained in Xj. Since all integral manifolds of D contained in X
are contractible, it follows that the holonomy group of the flat connection
in (L ® \/A"FY| A vanishes, for each integral manifold A of D contained
in Xo. Hence Xy = Sg.

Consider the case £ 2> 1. By Lemmas 3.1 and 3. 2 there exist a contractible
neighborhood ¥V, of mp(x) in X/D such that w| WD (Vy) isexact, and k
linearly mdependent Hamiltonian vector fields yé o yERin K| ﬂDl(Vy)
with periodic orbits with period 1. Since w|np (Vy) is exact, it follows that
the curvature form of the connection in L | np (V) is exact, so that L {75 LV, )
is a trivial line bundle. Let L* denote the bundle over X obtained from L by
the removal of the zero section and C* denote the multiplicative group of
nonzero complex numbers. Triviality of L|my (Vy) 1mphes that there exists a
mapping p: L¥| T(DI(V )~ C* and a 1-form 6 on np (V ) such that the
connection form in L* i nDI(Vy) isgiven by o = (1/2m)(dp/p) Wi,
where 7 L* | np}(V. ) > Tp (Vy) denotes the fiber bundle projection. The
relation between w and the curvature form of the connection in L implies
wlTpl(V. ) =df. Therefore, by Lemma 3.2, foreachi €{1, .. ., k}, the
vector ﬁeld y<§’ 1s the Harrultoman vector field of the function yf’ such that,
foreach x' € er ), yﬂ(x ) is equal to the integral of 8 over the orbit of

y£¥ through x'. On the other hand, the element of the holonomy group of
the connection v inL correspcndmg to the parallel transport along the orbit
of ,&/ through x' € mp Y(V,) is given by exp[(2mi/h) ,fi(x")]. Lemma 3.6
implies that we can choose ¥, small enough so that the elements of the
holonomy group of v/A"F defined by the orbits of },él, ey yék are con-
stants ycl, .. ., yc¥ which are equal to 1 or —1. The following relations are
the consequence of the definition of S

K esnapl (V)= {yc exp[(2ni/h),fi(x)] =1, forallj=1, ..., k} (3.1)

and

'€ X, Nap'(V,)and el exp[Qmifh),f(x)] = L forallj=1,..  k} =x'€S
(.2)
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Moreover, the functions yf .., yf® are independent of npt (V) because
their Hamiltonian vector fields are linearly independent and they are constant
along E | n5' (V).

Let M denote the integral manifold of E passing through x. For each
X €M we have a nelghborhood Vyof ¥ = mp(¥) €X/D and k functlons
5/, . .., 3* defined on 75! (Vy) whlch are constant along £ | 5! (V3),
independent, and satisfy the relations

x' €S Napt(Vy)} = {zef expl(2mi/h) 3£/(x)] = 1 forallj=1,.. ,k}
and
{x' € X; N g (Vy) and 3¢/ exp[(2mi/m)3f/(x)] = 1
forallj=1,...k}=>x €8,

Hence, ¥ € S N M if and only if M N np (V) S Sy N M which implies that
M NSy is open and closed in M in the induced topology. Since the manifold
topology on M is finer than the induced topology and M is connected, it
follows that M N Sy is either empty or equal to M. By hypothesis x EM N .Sy,
so that M N S, = M. Hence, M & S, ]

Proposition 3.8.If F is a complete strongly admissible polarization
then the Bohr-Sommerfeld set S is closed in X.

Proof. If S=X,itisclosed. HS# X, we show that X — Sis open. Let
x €X — Sand k= dim K. Then k > 0since Xy — So = 0. Let ,f7, .. ., ¥
be functions defined in a neighborhood W,}l(Vy) of x, where y = np(x),
satisfying (3. 1) and (3.2). Since x & Sy, there existsjE€ {1, .. ., k} such that
pel exp{(Zn/ $f7(x)} # 1. Then there exists a nelghboxhood W of x con-
tained in 7, (V) such that ¢/ exp[(2mi/h),fi(x")] # 1 for all x' € W. This
and the relation (3.1) imply that WS X — S. Hence X —S is open and S is
closed. n

Proposition 3.9. let F be a complete strongly admissible polariza-
tion, x € Sy, and V a neighborhood of 7, (x) € X/D such that 75} (V)
admits a canomcai extension of K | X N wp (V) to a distribution
vK on np (V). Let Q be the mtegral manifold of Inp(yKt) passing
through mp(x). Then, Xx N 754(0) < Sy and there exists an open
set ¥in X/D such that 0 < ¥ < Vand S 0 75 (¥) < n54Q).

Proof. If k=0, Q is a zero codimensional submanifold of ¥ < X/D so that
Q) is an open set in V containing y. Then we can take V=0 and the conditions
0 V< Vand SN (V) € apl(Q) are satisfied, and X, Napi0) S8,
because S = Xo. Let us assume now that & 2> 1. For each y €V, there exists
a neighborhood V', of y contained in ¥ and & functions J,f 2o pfFon
(V) satisfying the relations (3.1) and (3.2) in the proof of Proposition 3.7
and such that their Hamiltonian vector fields Span vKlnp (Vy) and have
periodic orbits with perlod 1. Further, Kt | np (V } is characterized by the
condition: © € pK*|7p (Vy) if and only if - f1 =y yf =-ce=ye fF
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Therefore, the functions ,f L 4f* are constant on integral manifolds of
v+ ﬂBl(Vy). Since ,cl, . .., ,cK are constant on mp'(Vy,), it follows that
yel exp[(2mi/h) ,f7] is constant on integral manifolds of K+ | np'(V,), for
eachj€{1, ..., k}. In particular, 7;'(Q) is the integral manifold of , K+
passing through x and it satisfies

ye! expl2aifn) ,f1 |75 (V, N Q) =1 (33)

foreachj€{1,...,k} and each y € V. This and (3.2) imply that

X3 Nap(Q) S Si. Foreachy €0, let W, denote the open subset of

np'(Vy) defined by x' € W,, if and only if | ,f(x") — ,fi(%) | < h/4n for

eachj€{1, ..., k}, where X is an arbitrary point of 75! (»). Since the functions

wf% ..., yf¥ are constant along integral manifolds of D [np!(Vy),

Wy, =apl(mp(Wy)). Put V'="Uymp(W,). Then U, W, = 15 (V). For each

x"€ npl(V) — O, the defmition of W,’s and the fact that the constants ¢/

are equal to +1 imply that ye/ exp[(2nif/h) fI(x)] # 1 forallj€{1, ..., k}

and all y such that x' € W,,. Clearly, @ € ¥ < V, and (3.1) implies that

SN apl (V) = a5 0). "
Propositions 3.7, 3.8, and 3.9 imply Theorem 2.4. Hence it remains to

prove Theorem 2.5. First, we need the following lemma.

Lemma 3.10. Let F be a complete strongly admissible polarization
of (X, w). For each x €S, — Int X, where Int X denotes the
interior of Xy, and each neighborhood W of x, WN X*¥+*1 NS+,

Proof. letx €8, —Int X3 € X — Int X3, Since X* = X, UXFk*1is

opet, each neighborhood of x has a nonempty intersection with X% *1.

Hence x belongs to the closure of X¥*1 x € C1 X* *1. Further, X¥*1=

Xy +1 UX*k*2 50 that either x EX**2 orx € C1 X, ,, and there exists a
neighborhood W of x such that WN X¥*2 =@ If W N X**2 = § then, since
Xk+1is open, WNX*+1= WA (Xg 4 UXE+2)= WN X, 14 is an open set
contained in X and containing x in its closure. Therefore, x ECL(W N

Xi+1) € O (Int Xp4q). Hence, x € CL X**1 implies either x € Cl (Int Xj..1)

orx EX*¥*2 If x € Cl X¥*2 we can repeat this process to get x & Cl (Int Xg4p)
orx € C1 X**3, and so on. Since X; = X9 is open, it follows that there exists

an integer / > k such that x € Cl (Int X;).

Let ¥, be a neighborhood of y = 7 (x) in X/D such that 75 (V) admits &
functions ,f o, ¥ satisfying (3.1) and (3.2) in the proof of Proposition
3.7. The Hamiltonian vector fields ygl, e ysk of yfl, .. .,yf", respec-
tively, are in K and have periodic orbiss with period 1. Since, for some [ > k,

x € Cl (Int X}) there exists a contractible set V' SV, N 7p(Int X;) contain-
ing y in its closure and [ independent functions g%, .. ., g/ on 75} (V) such
that their Hamiltonian vector fields £, . . ., & are in K and have periodic
orbits with period 1, for eachj €{1, ..., k}, fi | 75l(V) = g/, and

x'esnapl(V)} e ol exp[2ni/hgi(x"] =1 forallj=1,...,1 (3.4)

where ¢!, .. ., ¢! are the elements of the holonomy group of v//A"F defined
by the orbits of £, .. ., &, respectively, and ¢/ = yel, foreachj€{1,. .., k}.
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Suppose that, foreachjE€{k +1,. .., [}, g/(x") is not bounded as x" - x.

Let Q be the integral manifold of J7p(y, K+) passing through 7 (x). For
each neighborhood W of x, np(Q) N W (Y w5l(V) is a k-codimensional sub-
manifold of W N 75 (V). Since, by hypothesis, there exists a sequence

X,y <> X such that |g/(x,,) | >, forj €{k + 1, ..., I}, and the restrictions to
75HQ) N WA wp! (V) of the functions g¥*1, .. ., g’ are real and continuous,
the set

x'€nzt (@) N WNap(V) | ci exp[(2mi/h)gi(x)] = 1forallj=k+1,...,1}
(.5)

is not empty. However, the relations (3.3) and (3.4) imply that the set (3.5)
is contained in S. Hence, for each neighborhood W of x, S N WN np (V) # 0,
which implies that § N W N Xk*+1 £ ), A

It remains to prove that, for eachj €{k +1,. .., [}, |g/(x") | is unbounded
as x' = x. Without loss of generality, we may assume that D | WBI(Vy is
globally sganned by Hamiltonian vector fields so that we have an action of
R4 on 75! (V) denoted by ¥: R4 x np!(V,) - mp'(Vy) which preserves the
restriction of w to 75" (V). For each x' € np' (V) the integral manifold
Ay, of D through x" is diffeomorphic to the quotient of R by the isotropy
group G, and we denote by ay: R4/G,. - A, the canonical isomorphism.
Foreachj€{k+1,...,1} we define a function ¢/: 75}(V) >R by
@i(x") = Tag! (£1(x")), for each x' € wp (V). Since the vector fields
gk*1 . & have periodic orbits with period 1, ¢/(x") € G+ for each
x'€npl(V)and eachjE{k +1, ..., [}. We shall show first that | @/(x") | = o
asx’ > x, forallj€{k +1,.. 1}, where | ¢/(x") | denotes the Euclidean
norm of the vector ¢/(x") € R4, Suppose that, forsome jE€{k +1,...,1},
[ ¢/(x") | does not tend to infinity as x' — x. That is, there exists a constant
¢ > 0 such that, for each neighborhood W of x, there exists x* € W satisfying
| ¢/(x"y | <c. Hence there exists a sequence {x,,,} in 75 (V) convergent to x
such that /(x,,,) converges to a vector lim ¢/(x) € R9. The continuity of
the action ¥ of R9 on 75! (V) and the relation ¢/(x,,) € Gx,, for each
mE Z* imply that lim ¢/(x) € G. Since G, has rank k and the vectors
yEX), .., »E¥(x) span K, each element of G, is a linear combination of
T (EY(x)), . .., Ta; (£¥(x)) with rational coefficients so that
lim ¢/(x) = ZX,a; To;1(§(x)) for some rational numbers ay, . . ., k. On
the other hand, for each m € Z%, ¢/(x,,) is linearly independent of
Togy (E'%m)) . . ., Tag,, (£5(x,,)). The action ¥ of R in m5'(V,)
includes a local diffeomorphism ®: R4 x V; - np(V,), where Vyisa
neighborhood of y contained in ¥, admitting a section o: V; > np! (V)
such that o(y) = x. The mapping ® is defined by ®((z4, .. ., #3), ') =
U((ty, . . ., tg), 0(")) foreach y' € V. Let Bx V, S R4 x V; be a neigh-
hood of (0, y) such that ®| B x ¥, is a diffeomorphism of B x ¥, onto its
image ®(B x V). Then, for each x’' € n5}(V,), Gy N B ={0}. Since
@y, . . ., @ are rational numbers, there exists a positive integer V such that
Nay, . . ., Nay are integers. Then, for each m € Z7, the vector s,,, = N{¢/(x,,) —
Tk a; Tog, (5(x,,))] is different from zero, is contained in G, and
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S — 0 as m — oo, Hence, for m large enough, x,,, € 15! (V,) and s,,, €B,
which leads to contradiction with the assumption that G, N.B = {0} for all
x' € m5t(V,). Therefore, | /(x")| > easx’ > x, foreachj=k+1,...,1
The set {(¢* T1(x")/ |gF (x|, . . ., PO DX €mp! (V) is
bounded in R4U-¥), Hence, there exists a sequence x,, > x and/— &
vectors v¥*1, ., vfin D, such that, foreachj€{k +1,...,1},
El(xm)]| ¢/ (xm) | = v/ as m > .

It follows from Lemma 3.1 that we may assume, without loss of generality,
the existence of a 1-form 8 in n5'(V},) invariant under the action of R¥,
such that w | 75" (V) = df and 0(v/) >0 foreachj€{k +1,...,1}. By
Lemma 3.2, foreachjE{k + 1, ..., 1}, the vector field &/ is the Hamiltonian
vector field of 8(£7). Since &/ is the Hamiltonian vector field of g/, the function
(&%) — g/ is constant along D | np (V) and Vis contractible, it follows that
there exists a constant b/ such that g/ = 6(&7) + b/. Moreover,

lim [EGem)/ 197G 1] = o/, 600y >0 and lim | @Gep) | =

m —r o m— =

imply that | 0(£/(x,,))| > = as x,,, > x. Hence, the function | g/(x") | is un-
bounded as x = x. This completes the proof of the lemma. u
Theorem 2.5 states that, for a complete strongly admissible polarization
F such that F = F, dim >0 if and only if S # 0. Clearly, S = @) implies
# = 0. Suppose that S # 0 and let k be the largest integer such that Sy # 0.
We shall show that #ok # @. If S N Int Xy # @, then there exists an open
set Vin X/D and an integral manifold Q of Trp(K*) such that Sp N
Int X N 75NQ) # Pand Xy N 751(Q) S Sg. Therefore, Sy N 75 (Q) has
nonempty interior in 75'(Q). Let A ® v be a smooth section of
(L @ VN'Fy| 15 (Q) covariant constant along F'| Q with nonempty
support contained in S N w5 (Q) which projects to a compact set in
X/E. Such a section exists because the condition F = F implies that F is
the complexification of D, and therefore A ® v is covariant constant along
Fif and only if it is covariant constant along D. Moreover, there exists a
nonzero covariant constant along D sections of (L ®/N*F)|75(Q)
provided Sy N 751(Q) has a nonempty interior in 75'(Q). The condition
that the projection to X/E of the support of A ® v is compact and the
assumption F = F, which is equivalent to £ =D, imply that the integral (2.6)
converges. Since the support of A ® vis not empty, A ® v # 0, so that
Ho* # 0. Hence dim #> dim #,* > 0, which completes the proof of
Theorem 2.5.
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